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Resumo

A classificacdo multi-rétulo é uma tarefa fundamental no aprendizado de méaquina,
pois permite que uma instancia pertenca a multiplas categorias simultaneamente,
o que é essencial em diversos problemas reais, como o reconhecimento de imagens
em Engenharia e Ciéncias Médicas. Esse tipo de classificacdo possibilita uma repre-
sentacao mais precisa e abrangente das relacées complexas entre dados e categorias,
superando as limitacdes das classificacdes binaria e multi-classe.

Esta dissertacdo apresenta o Sistema Fuzzy Multi-Rétulo Takagi-Sugeno-
Kang-Choquet (ML-TSKC FS), um modelo inovador de classificagio multi-
rétulo que generaliza o Sistema Fuzzy Multi-Rétulo Takagi-Sugeno-Kang (ML-TSK
FS) ao incorporar a Integral de Choquet. O modelo proposto utiliza a integral
de Choquet, definida em termos de medidas fuzzy, para agregar informacgoes no
calculo da forca de ativagdo nos antecedentes das regras, capturando interacoes
complexas entre atributos e a incerteza presente nos dados. Essa abordagem permite
um tratamento mais refinado da informagcao, tornando o modelo especialmente eficaz
em cenarios onde os rétulos possuem dependéncias complexas.

Para avaliar o desempenho do ML-TSKC FS, exploramos a aplicacdo da integral
de Choquet com cinco medidas fuzzy distintas, realizando um estudo comparativo em
doze conjuntos de dados de classificagdo multi-rotulo. A metodologia inclui validagao
cruzada e testes estatisticos para garantir a robustez dos resultados. Os resultados
mostram que o modelo ML-TSKC FS oferece melhorias significativas em termos de
precisao e capacidade de generalizacdo, quando comparado ao modelo padrao ML-
TSK FS e a outros métodos de referéncia, incluindo algoritmos tradicionais, redes
neurais e sistemas fuzzy.

Concluimos que o uso da Integral de Choquet no processo de agregagao aumenta
a robustez e a precisao do modelo ao lidar com incertezas e dependéncias complexas,
tornando o ML-TSKC FS uma alternativa promissora para problemas de classifica-

¢ao multi-rétulo em aplicagoes praticas.

Palavras-Chave: Multi-rétulo Classificacao, Integral de Choquet, Medida Fuzzy,

Sistema de Inferéncia Neuro-Fuzzy, Sistema Fuzzy Multi-rétulo Takagi-Sugeno-Kang.






Abstract

Multi-label classification is a fundamental task in machine learning, as it allows an
instance to belong to multiple categories simultaneously, which is essential in various
real-world problems, such as image recognition in Engineering and Medical Sciences.
This type of classification enables a more precise and comprehensive representation
of the complex relationships between data and categories, overcoming the limitations
of binary and multi-class classification.

This dissertation presents the Takagi-Sugeno-Kang-Choquet Multi-Label
Fuzzy System (ML-TSKC FS), an innovative multi-label classification model
that extends the Takagi-Sugeno-Kang Multi-Label Fuzzy System (ML-TSK FS) by
incorporating the Choquet Integral. The proposed model uses the Choquet inte-
gral, defined in terms of fuzzy measures, to aggregate information in the calculation
of activation strength in rule antecedents, capturing complex interactions between
attributes and the uncertainty present in the data. This approach enables a more
refined information processing, making the model especially effective in scenarios
where labels exhibit complex dependencies.

To evaluate the performance of ML-TSKC FS, we applied the Choquet integral
with five distinct fuzzy measures in a comparative study on twelve multi-label clas-
sification datasets. The methodology includes cross-validation and statistical tests
to ensure robust results. The results show that the ML-TSKC FS model provides
significant improvements in terms of accuracy and generalization capacity when com-
pared to the standard ML-TSK FS model and other reference methods, including
traditional algorithms, neural networks, and fuzzy systems.

We conclude that using the Choquet Integral in the aggregation process increases
the model’s robustness and accuracy in handling uncertainties and complex depen-
dencies, making ML-TSKC FS a promising alternative for multi-label classification

problems in practical applications.

Keywords: Multi-Label Classification, Choquet Integral, Fuzzy Measure, Neuro-
Fuzzy Inference System, Multi-Label Takagi-Sugeno-Kang Fuzzy System
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Capitulo 1

INTRODUCAO

No mundo atual, a quantidade de informagao disponivel é imensa e cresce de forma
exponencial. Para lidar e entender essa avalanche de dados, é crucial desenvol-
ver modelos de aprendizado de maquina eficientes e precisos. Uma técnica que tem
ganhado destaque nesse campo ¢ a classificagao multi-rétulo, que amplia as capa-
cidades das abordagens tradicionais de classificacdo, permitindo que uma instancia
seja associada a multiplas categorias simultaneamente. Por exemplo, um artigo de
noticias pode ser classificado como politica, economia e “internacional” ao mesmo
tempo [Wei et al. 2022]. Isso é especialmente ttil em tarefas como categorizagao de
textos e reconhecimento de imagens, onde os dados do mundo real muitas vezes nao
podem ser limitados a uma tnica categoria.

Essa flexibilidade permite que os modelos lidem com a complexidade inerente
aos dados reais, superando as limitagdes das abordagens binarias ou multi-classes,
que atribuem cada instncia a um tnico rétulo [Tsoumakas e Katakis 2007]. Além
disso, a classificagao multi-rotulo considera as potenciais interagoes entre os rétulos.
Por exemplo, na medicina, um paciente pode apresentar sintomas que correspondem
a multiplas doencas relacionadas. Ignorar essas interagoes pode levar a diagndsticos
menos precisos [Herrera et al. 2016]. Com essa perspectiva, é possivel capturar como
a presenca de um rétulo pode influenciar a presenca de outro, oferecendo uma visao
mais precisa e contextualizada dos problemas do mundo real [Read et al. 2011].

No entanto, essas abordagens mais detalhadas apresentam desafios [Zhang, Ling
et al. 2013]. Além disso, a incerteza e a imprecisao comuns em tarefas de classificagao

multi-rétulo agravam esses desafios. Conjuntos de dados com ruido ou incompletos
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podem criar ambiguidades na classificagdo, onde métodos que ndo consideram a
incerteza inerente aos dados podem falhar em produzir modelos robustos e confidveis
[Gibaja e Ventura 2015].

1.1 Motivacao e Justificativa

Motivados pelos desafios apresentados, torna-se necessario explorar novas aborda-
gens que contemplem tanto a complexidade, interdependéncia entre rétulos, incer-
teza e a imprecisdo dos dados. Foi nesse contexto que os modelos neuro-fuzzy
apareceram como uma alternativa promissora [Lou et al. 2021]. Esses modelos com-
binam as vantagens das redes neurais, que sao eficientes para aprender representa-
¢Oes complexas de grandes volumes de dados, com a légica fuzzy, conhecida por sua
eficicia no tratamento de incertezas e imprecisoes [Zadeh 1965].

Para ilustrar isso, considere o problema de diagnosticar doencas a partir de
exames laboratoriais. Muitas vezes, os resultados de exames clinicos apresentam
variagoes sutis e sobreposicdo de valores entre diferentes condigoes médicas. Por
exemplo, niveis moderadamente elevados de glucose e pressdo arterial podem ser
indicativos de diversas condigdes, como pré-diabetes, diabetes tipo 2 ou até sindrome
metabdlica, dependendo de outros fatores. Um modelo neuro-fuzzy consegue lidar
com essa incerteza nos dados de entrada ao permitir graus de pertinéncia a diferentes
diagnoésticos, ajustando-se a cada cenario clinico especifico e emulando o raciocinio
humano.

A integracdo de redes neurais e légica fuzzy oferece uma maneira de superar
as limitagoes das técnicas convencionais, proporcionando uma estrutura robusta
para modelar dados complexos e ambiguos [Lin et al. 1991; Jang e Jyh-Shing 1993;
Kasabov, Song e Qun 2002; Lou et al. 2021].donde

Contudo, um aspecto fundamental dos modelos neuro-fuzzy estd no tratamento
da informagao dos atributos durante a ativacdo das regras, ou seja, na forma como
o peso dessas regras é calculado no processo de inferéncia.

Classificadores notéveis, como o ANFIS (Sistema Adaptativo de Inferéncia Neuro-
Fuzzy [Jang e Jyh-Shing 1993, DENFIS (Sistema Evolutivo Dindmico de Inferéncia
Neuro-Fuzzy) [Kasabov, Song e Qun 2002], HYFIS (Sistema Hibrido de Inferéncia
Neuro-Fuzzy) [Kim e Kasabov 1999], e ML TSK FS (Sistema Fuzzy Multi-Rétulo
Takagi-Sugeno-Kang) [Lou et al. 2021], utilizam operagdes de agregagao tradicionais,
como os operadores minimo e produto, para esse cdlculo. Embora esses operado-
res tenham sido importantes no inicio do desenvolvimento dos sistemas de inferéncia
fuzzy, eles ndo conseguem representar adequadamente a complexidade das interagoes
entre atributos e rétulos. Isso ocorre porque assumem relacdes simples ou indepen-

dentes, enquanto contextos de classificacdo multi-rotulo exigem ferramentas capazes
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de modelar interagoes mais complexas e interdependéncias entre os dados.

Portanto, ha uma necessidade critica de explorar novas abordagens de agregacao
que possam superar essas limitagoes, fornecendo um meio mais eficaz de considerar as
interagOes complexas entre atributos e a incerteza dos dados. O desenvolvimento de
tais métodos representa um passo fundamental para melhorar a eficacia dos modelos
neuro-fuzzy em aplicagoes de classificacdo multi-rétulo.

Por outro lado, estudos recentes tém mostrado que o uso da Integral de Cho-
quet como método de agregacao no calculo da agregacao das regras em sistemas
de inferéncia fuzzy tem gerado bons resultados, conforme demonstrado em diversos
estudos [Lucca, Sanz, Dimuro et al. 2019; Marco-Detchart et al. 2021; Wieczynski,
Dimuro et al. 2020; Ferrero-Jaurrieta et al. 2023]. Esses estudos exploram a apli-
cacao da Integral de Choquet em areas como processamento de imagem, memoria
de longo prazo, tomada de decisdo multicritério, classificacao, interfaces cerebrais,
reconhecimento de padroes e gerenciamento de projetos.

A Integral de Choquet é uma ferramenta matematica sofisticada que vai além
dos operadores tradicionais de agregacdo, como minimo e maximo, usados em siste-
mas fuzzy convencionais. Enquanto esses operadores se baseiam nos graus individu-
ais de pertinéncia das variaveis, a Integral de Choquet, definida em termos de uma
medida fuzzy, captura o relacionamento entre os atributos, considerando a impor-
tancia relativa de cada combinagao possivel de varidveis [Lucca, Sanz, Dimuro et al.
2019; Wieczynski, Dimuro et al. 2020].

1.2 Pergunta de Pesquisa
A luz do exposto, formula-se a seguinte pergunta de pesquisa:

A inclusdo da Integral Discreta de Choquet na agregacio de atributos para calcular
a ativacdo das regras em um modelo de classificacio multi-rétulo neuro-fuzzy pode

levar a uma melhoria no desempenho do modelo original?

1.3 Objetivos

Objetivo Geral

O objetivo principal deste trabalho foi:

e Propor uma generalizacao do modelo ML-TSK FS, desenvolvendo um novo mo-
delo denominado ML-TSKC FS, que utiliza a Integral de Choquet no processo
de agregagao de atributos para o cdlculo da ativagdo das regras (Antecedentes)

para melhorar a performance e robustez na classificacdo multi-rétulo.
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Objetivos Especificos

1.

Estudar os métodos de agregacao usados em modelos neuro-fuzzy para classi-

ficacao.

Implementar a Integral de Choquet no célculo da ativacao das regras no modelo

original, gerando o novo modelo generalizado proposto ML-TSKC FS.

Avaliar o desempenho do modelo proposto em comparacdo com abordagens

existentes na literatura, utilizando conjuntos de dominios diferentes.

Validar a eficacia do modelo através de testes estatisticos.

1.4 Metodologia

Para alcancar os objetivos propostos, foi seguida uma metodologia estruturada em

varias etapas:

Revisao Bibliografica: Estudo dos modelos neuro-fuzzy existentes e das

técnicas de agregacao utilizadas na classificacdo.

Desenvolvimento do Modelo: Implementagao da integral de Choquet no
algoritmo do modelo ML-TSK FS.

Implementacao Computacional: Adaptagdo do cédigo do modelo original
ML-TSK FS, utilizando ferramentas de programacao adequadas para obter o

coddigo da versao proposta.

Experimentacao: Estudos comparativos do modelo proposto ML-TSKC FS

com o modelo original ML-TSK FS e modelos consolidados na Literatura.

Anadlise de Resultados: Avaliagdo de desempenho do modelo proposto ML-
TSKC FS com métricas padrao em classificagdo multi-rotulo e realizacao de

testes estatisticos comparativos.

1.5 Estrutura do Trabalho

O trabalho organiza-se da seguinte maneira:

o Capitulo 1: Apresenta o contexto da pesquisa, motivacao e justificativa, além

dos objetivos geral e especificos.

e Capitulo 2: Discute a classificagdo multi-rotulo, aprendizado de maquina, re-

des neurais artificiais, sistemas de inferéncia fuzzy, e a Integral de Choquet,

fornecendo a base tedrica necessaria.



1.5. Estrutura do Trabalho 5

e Capitulo 3: Descreve o desenvolvimento do modelo proposto, Sistema Fuzzy
Multi-Rétulo Takagi-Sugeno-Kang Choquet (ML-TSKC-FS). Detalha a arqui-
tetura do modelo proposto, descrevendo cada uma das camadas e o método

de aprendizagem utilizado.

o Capitulo 4: Apresenta as ferramentas e técnicas usadas na andalise experimen-
tal, os experimentos realizados e os resultados obtidos, tanto em comparacao

com o modelo ML-TSK FS quanto com outros modelos da literatura.

e Capitulo 5: Resume as principais conclusoes derivadas da pesquisa e aponta
possiveis direcoes para futuros trabalhos, destacando as contribuig¢oes do mo-
delo ML-TSKC FS.






Capitulo 2

PRELIMINARES

Este capitulo apresenta os conceitos tedricos essenciais que fundamentam este traba-
lho. Primeiramente, discute-se a classificacdo multi-rétulo. Em seguida, apresenta-se
a fundamentacao dos sistemas neuro-fuzzy, introduzindo os principios bésicos das
redes neurais artificiais e dos sistemas de inferéncia fuzzy. A seguir, explora-se a
Integral de Choquet, que desempenha um papel central na agregacao de dados. Es-
ses conceitos estabelecem a base para o entendimento do desenvolvimento proposto

neste trabalho.

2.1 CLASSIFICACAO MULTI-ROTULO

Nesta secao, abordaremos a classificacdo multi-rétulo no contexto do aprendizado
de maquina supervisionado, também explicaremos suas diferencas em relacao as

classificacoes tradicionais e suas aplicagOes praticas.

2.1.1 Aprendizado de Maquina

O aprendizado de maquina, ou Machine Learning (ML), é uma subdisciplina da
inteligéncia artificial que permite a criacdo de modelos capazes de aprender a partir
dos dados, ajustando seu comportamento com base em padrdes e caracteristicas
extraidas automaticamente, sem necessidade de programacio explicita para cada
tarefa [Mitchell 1997]. Esse aprendizado é especialmente 1til em problemas onde
hé grandes quantidades de dados e a complexidade é alta, tornando a solugao por

métodos tradicionais impraticavel [Alpaydin 2010].

7
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O principal objetivo do aprendizado de méaquina é desenvolver algoritmos que
possam realizar inferéncias ou previsdes a partir de novos dados, imitando a capa-
cidade humana de aprendizado por meio da experiéncia. Esse processo tem ampla
aplicacao, desde a andlise de dados e reconhecimento de padroes até a automacao
de tarefas em areas como visdo computacional, processamento de linguagem natural
e medicina [Mitchell 1997; Herrera et al. 2016].

Tipos de Aprendizado de Maquina

Existem trés tipos principais de aprendizado de maquina, cada um adaptado a di-

ferentes tipos de problemas, conforme mostrado na Figura 2.1.

Reducao de
dimensio Classificagao

Aprendizado
nao
\ supervisionado

supervisionado
Clusterizagao A p ren d i za d o /R,egressﬁo
de maquina

Aprendizado

Aprendizagem
por reforgo

Figura 2.1: Aprendizado de maquina

e Aprendizado Supervisionado: Neste tipo, o modelo é treinado com dados
rotulados, onde cada entrada tem uma saida conhecida. O objetivo é aprender
a mapear as entradas para as saidas corretas e realizar previsdes precisas. As

principais tarefas incluem:

— Classificagcio: A tarefa de categorizar dados em classes, como identificar

se um e-mail é spam ou nao spam.

— Regressdo: Focada em prever valores numéricos continuos, como o preco

de uma casa com base em suas caracteristicas [Alpaydin 2010].

e Aprendizado Nao Supervisionado: Aqui, o modelo trabalha com dados
nao rotulados, buscando identificar padroes e relagoes subjacentes nos dados.

As principais tarefas incluem:

— Clusteriza¢do: Agrupamento de dados similares, como segmentar clientes

com base em seu comportamento de compra.
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— Redug¢do de Dimensionalidade: Simplificagdo dos dados, preservando as

caracteristicas mais importantes para facilitar a andlise e visualizacao
[Kosko 1992; Herrera et al. 2016].

e Aprendizado por Reforgo: Nesse tipo de aprendizado, um agente interage
com o ambiente e aprende por tentativa e erro, buscando maximizar uma
recompensa acumulativa. E amplamente aplicado em controle de robos e jogos,

onde decisdes sequenciais sdo fundamentais [Mitchell 1997].

Dentre as varias tarefas de aprendizado supervisionado, a classificacdo é uma
das mais importantes e aplicaveis. A capacidade de um modelo de aprendizado de
maquina de classificar dados com precisdo, permite tomadas de decisdo automaéti-
cas e precisas, sendo, portanto, uma ferramenta poderosa para transformar dados

complexos em informagoes tteis. [Mitchell 1997; Suthaharan 2016].

2.1.2 Classificacao

A classificacao de dados é uma tarefa fundamental no aprendizado supervisionado. O
processo de classificacdo envolve a atribuicdo de uma ou mais categorias predefinidas
a instancias de dados com base em caracteristicas observadas. Cada instancia é
classificada em uma categoria especifica, com o objetivo de distinguir entre diferentes
classes ou grupos nos dados de entrada. [Mitchell 1997; Herrera et al. 2016]. A seguir,

uma defini¢do formal do processo de classificagao.

Definigao 1. (Classificacio) Seja X o espago de entrada e ) o espago de saida.
Definimos o conjunto de treinamento D = {(x;,y;) | 1 <i < n}, onde x; pertence a
X ey; pertence a Y. O objetivo da classificagcdo € aprender um modelo, representado
por uma aplicagdo f, : X — Y, onde p representa os parametros que determinam o
modelo especifico. Para um novo dado de entrada x, usamos f, para prever a saida

correspondente § = f,(x).

Entradas Saida

. ~ L
xeXcR” p yeYcR
Figura 2.2: Classificador

Com base na definicdo 1 e na Figura 2.2, podemos descrever a classificagdo como
um processo em que um modelo de aprendizado de maquina é treinado para as-
sociar um conjunto de caracteristicas de entrada, representado pelo espaco X, a
uma varidvel de saida discreta, representada pelo espaco ), que contém as clas-

ses ou categorias possiveis. Para isso, utiliza-se um conjunto de treinamento D =
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{(zi,yi) | 1 <i<n}, onde cada x; pertence ao espago de entrada X e cada y; per-
tence ao espago de saida ). O objetivo de um modelo de classificacdo é estimar
uma fungao, chamada de classificador, f, : X — ), onde p representa os pardmetros
que definem o modelo especifico (ver Figura 2.2). Assim, dada uma nova instan-
cia de entrada x, o modelo utiliza a funcao f, para prever a saida correspondente
g = fp(z). Esse processo busca minimizar os erros de classificacio e maximizar a
precisdo ao aplicar o modelo em novos dados [Alpaydin 2010; Mitchell 1997].

A seguir, abordaremos os principais tipos de classificagdo em aprendizado de

maquina, incluindo: classificacdo binaria, multi-classe e multi-rétulo.

2.1.3 Tipos de Classificacao

De acordo com [Herrera et al. 2016], os tipos de classificagdo no aprendizado supervi-
sionado sdo determinados pela natureza das saidas que o modelo deve prever. Esses
tipos incluem classificacdo bindria, multi-classe e multi-rétulo, cada um deles direci-
onado a problemas especificos e caracteristicas dos dados. Essas variagoes garantem
que os modelos possam se adaptar a diferentes graus de complexidade e aplicacoes,
desde problemas simples até os que envolvem multiplas categorias simultidneas. A

seguir, exploramos cada tipo de classificagdo em detalhe.

¢ Classificacdo Binaria: Consiste em atribuir uma das duas categorias possi-
veis a cada item em um conjunto de dados. Este tipo de classificacdo é simples
e fundamental, onde o objetivo é que o modelo aprenda a distinguir entre duas
opgoes opostas, como sim ou nao. Um exemplo cléssico de classificagao bina-
ria é a deteccdo de e-mails de spam, onde o modelo classifica os e-mails como

spam ou ndo spam como mostrado na Figura 2.3.
(\r

_—
‘ o Spam
- Nao é Spam

Figura 2.3: Exemplo de classificacido binaria

A Tabela 2.1 apresenta a notacdo usada para a classificagdo bindria. Neste caso,
cada linha representa um exemplo onde o vetor de entrada é classificado como spam
ou ndo spam, dependendo das caracteristicas observadas em x. A varidvel y indica a
categoria, assumindo valores em £ = {0,1}, onde 1 representa spam e 0 representa

nao spam.



2.1. CLASSIFICACAO MULTI-ROTULO 11

Binario
Exemplo Caracteristicas y € £ = {0,1}
1 X1 1
2 X9 0

Tabela 2.1: Notacao de classificagdo binaria

o Classificacdo Multi-classe: E um tipo de classificacio em que os dados sdo
atribuidos a uma das varias categorias possiveis. Diferente da classificacio
bindria, aqui o modelo é treinado com varias classes, e o objetivo é reconhecer
e categorizar novas instancias em uma dessas classes. Um exemplo tipico é
o reconhecimento de imagens, onde o modelo deve classificar uma imagem
em uma das varias categorias possiveis, como passaro, gato ou cao como

mostrado na Figura 2.4.

- Passaro
- Gato
- Peixes

\ - Cao
- Coelho

Figura 2.4: Exemplo de classificacdo multi-classe

A Tabela 2.2 apresenta a notacdo usada para a classificacdo multi-classe. Nesse
caso, cada linha representa um exemplo onde o vetor de entrada é classificado
em uma das varias categorias possiveis, dependendo das caracteristicas observa-
das em x. A varidvel y indica a categoria da classe, assumindo valores em £ =
{A1, A2, A3, Mg, A5}, onde cada valor representa uma classe diferente, como péssaro,

gato, peixes, cao ou coelho.

Multi-classe
Exemplo Caracteristicas y € £ = {1, A2, A3, A\g, A5}

1 X1 )\2
2 X2 A4
3 X3 )\3
4 X4 Al
5! X5 )\3

Tabela 2.2: Notacao de classificagao multi-classe
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2.1.4 Classificagdo Multi-rétulo: Definicdo e Aplicagoes

A classificacdo multi-rétulo é uma evolucao dos modelos tradicionais de classifica-
¢ao, desenvolvida para lidar com problemas onde uma instancia pode pertencer a
multiplas classes simultaneamente. Essa abordagem difere das classificac6es binaria
e multi-classe tradicionais, que assumem que uma instancia pertence a apenas uma
categoria. No contexto multi-rotulo, uma instancia pode estar associada a varios ré-
tulos, o que aumenta a complexidade e requer técnicas especificas para uma anélise
eficiente [Herrera et al. 2016; Zhang, Zhou e Tsoumakas 2009].

Formalmente, o problema de classificagio multi-rotulo é definido como uma
extensdo dos métodos de classificacdo tradicionais. Considerando um conjunto
de dados D = {(xi,y:)};, onde x; representa a instancia de entrada e y; =
{yi1,yi2, ..., yir} é um vetor de rétulos binarios, em que y;; = 1 indica que o rétulo
J estd presente na instancia i, enquanto y;; = 0 indica sua auséncia [Suthaharan
2016].

Essa definicdo contrasta com a classificagdo binaria, onde y; possui apenas dois
valores possiveis, e com a classificagdo multi-classe, onde y; pertence a uma tunica
classe entre varias. A classificacdo multi-rétulo, portanto, permite a associagao de
uma instancia a multiplas classes simultaneamente, o que requer modelos especificos

para lidar com as correlagoes e dependéncias entre rétulos [Herrera et al. 2016].

- Passaro
- Gato

- Peixes
- Céo

- Coelho

Figura 2.5: Exemplo de classificagdo multi-rétulo

A Figura 2.5 exemplifica um caso de classificagdo multi-rétulo, onde uma ima-
gem pode conter miultiplos rétulos, como gato e cdo, capturando a complexidade
do contexto. Em seguida, aprofundaremos na definicdo formal e detalharemos o

funcionamento do classificador multi-rétulo.

Multi-rétulo

Exemplo Caracteristicas

yi1 Y2 Yz ya y CL={A, 2, A3, M4}
1 X1 1 1 0 1 {1, A2, A}
2 X2 0 0 0 1 {4}
3 X3 0 1 1 1 {22, A3, A1}
4 X4 1 0 1 0 {)\1, )\3}
5 X5 0 1 1 0 {)\2, )\3}

Tabela 2.3: Notagao de classificacdo multi-rétulo
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A Tabela 2.3 apresenta a notacao usada para a classificacdo multi-rétulo. Nesse
caso, cada linha representa um exemplo onde o vetor de entrada é classificado em
miultiplas categorias simultaneamente, dependendo das caracteristicas observadas
em x. A varidvel y indica os rétulos atribuidos a cada exemplo, assumindo um
subconjunto de valores em £ = {A1, A2, A3, \4}. Isso permite que um dnico exemplo
pertenca a varias classes ao mesmo tempo, como pdssaro, gato, peixes, cio ou coelho,

conforme mostrado na Tabela 2.3.

Definicao 2. (Classificador Multi-Rétulo) Seja X = R4 o espago de caracteristicas
e Y = RE 0 espaco de rétulos. Dado o conjunto de treinamento D, o objetivo é
encontrar uma fungao f, : X — Y chamado de classificador multi-rétulo que, para

uma nova instancia x, preverd o vetor de rotulos apropriados.

Na definicao de classificador multi-rétulo o parametro p representa os parametros

de aprendizagem do modelo f,. A seguir esse processo de aprendizagem é descrito.

Processo de Treinamento de um Classificador Multi-rotulo

O processo de treinamento de um classificador multi-rétulo pode ser dividido em
varias etapas fundamentais. A imagem a seguir ilustra essas etapas, desde a organi-

zacao do conjunto de dados até a classificagdo final de uma nova instancia:

yeYcR"

VeV ={¥. 1005 V05 }
»=[1,0,1,0,0]

¥, Cao
s Macaco

Figura 2.6: Esquema do Processo de Treinamento e Predicdo em
Classificagao Multi-rétulo

e Conjunto de Dados e Pré-processamento:O processo comega com a orga-
nizacdo do conjunto de dados, representado na Figura 2.6 a esquerda. Cada

instdncia z € X C R4 representa uma imagem caracterizada por um conjunto
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de atributos ou caracteristicas. Para melhorar a qualidade do treinamento,

sao aplicadas etapas de pré-processamento, como:

— Normalizagao e Padronizacgao: Garantir que os atributos tenham es-

calas comparaveis.

— Divisdao do Conjunto de Dados: Separar em conjuntos de treina-
mento, validagdo e teste, assegurando que o modelo seja avaliado em

dados ndo vistos.

Inicializacdo e Ajuste de Parametros: Apds o pré-processamento, o mo-

delo ¢ inicializado e os hiperpardmetros sdo ajustados. Isso envolve:

— Inicializacdo dos Pardmetros do Modelo: Definir valores iniciais
para os pesos ou parametros especificos do modelo (ex.: pesos iniciais

para redes neurais).

— Ajuste de Hiperparametros: Configurar valores como taxa de apren-

dizado ou regularizacdo usando métodos como grid search.

Iteragdo de Treinamento (Aprendizado: O classificador f,, representado
na Figura 2.6 pela mente em treinamento, aprende a mapear as instancias x

para seus respectivos multi-rétulos ¢:
fp(x):QGyCRL

Durante o treinamento:

— Funcgao de Custo: Calcula-se o erro entre as previsoes do modelo e os

valores reais, guiando o ajuste dos parametros.

— Retropropagacio e Atualizacao de Parametros: Ajuste dos pesos
para minimizar o erro, usando algoritmos como retropropagacao para

redes neurais.

Predicdo em Novos Dados: Apds o treinamento, o modelo é aplicado a
novos dados, como ilustrado na parte central da Figura 2.6. Ao receber uma
nova instancia x, o classificador gera uma predi¢gdo multi-rétulo ¢, onde § =

[1,0,1,0,0] representa as etiquetas atribuidas & imagem.

Interpretacdo dos Resultados: Cada valor em 3 indica a presenca (1)
ou auséncia (0) de cada rétulo. Na imagem, os rétulos correspondentes a
Ledo (y1) e Tigre (y3) sdo ativados, indicando que o classificador associou
a imagem a esses animais. Esse resultado é essencial para contextos onde

multiplas classes podem descrever uma tinica instancia.
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e Validacao e Teste: Para avaliar a performance do modelo em dados reais, é
usado um conjunto de teste. Métricas multi-rétulo sdo aplicadas para verificar

a capacidade do modelo de generalizar para novos dados.

Em seguida, exploraremos algumas técnicas comuns para a construcao de clas-
sificadores multi-rétulo, com foco em abordagens baseadas em transformacdo de

problema e adaptacgao de algoritmo.

2.1.5 Técnicas Comuns de Classificacao Multi-Rétulo

As técnicas para resolver problemas de classificacdo multi-rétulo, podem ser di-
vididas principalmente em técnicas de transformacio de problema e adaptacio de
algoritmos [Herrera et al. 2016]. Essas abordagens ajudam a resolver os desafios de
associar multiplos rétulos a uma mesma instancia, seja transformando o problema
em tarefas mais simples ou adaptando algoritmos existentes para lidar diretamente

com multiplos rétulos.

Transformagao de Problema: Converte a classificacio multi-rétulo em outras
formas de aprendizado que podem ser resolvidas por métodos de classificagao binaria

tradicionais. Os principais métodos de transformacao de problema incluem:

« BR (Binary Relevance): Trata cada rétulo como um problema separado
de classificagéo bindria. O método proposto por [Leski 2002] utiliza uma abor-
dagem e-insensivel para melhorar a generalizagdo ao resolver sistemas de de-

sigualdades lineares.

o CC (Classifier Chains) : Também divide o problema em miltiplas classifi-
cacOes bindrias, mas considera a dependéncia entre rétulos ao usar o resultado
da previsao de cada rétulo como entrada para o préximo rétulo. Essa abor-
dagem foi introduzida por [Read et al. 2011] e permite capturar a correlacao

entre rotulos, melhorando o desempenho.

e ML-KNN (Multi-Label k-Nearest Neighbor): Um método baseado em
vizinhos mais proximos, que prevé rétulos para uma nova instancia com base
nos k vizinhos mais préoximos. Essa técnica classica foi adaptada para multi-
rétulo por [Zhang e Zhi-Hua 2007].

o« MLSF (Multi-Label Selection of Features): O método MLSF combina
aprendizado de meta-rétulos com um processo de selecdo de caracteristicas,
considerando as correlagoes entre rétulos para identificar caracteristicas re-

levantes e melhorar a precisdo, conforme descrito por [Sun, Kudo e Kimura
2016).
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Adaptacao de Algoritmos: Nessa abordagem, ajustam-se algoritmos tradicio-
nais para que lidem diretamente com problemas multi-rétulo, sem a necessidade de
transforma-los em classificagoes binarias. Alguns dos métodos mais populares de

adaptacao incluem:

« BP-MLL (Backpropagation for Multi-Label Learning): Este método
foi um dos primeiros a introduzir o aprendizado de correlagdao entre rétulos,
assumindo que prever rétulos relacionados juntos é mais preciso do que prever
rétulos isoladamente. Desenvolvido por [Min-Ling e Zhi-Hua 2006], o BP-MLL

utiliza redes neurais especificas para aprendizado multi-rétulo.

o C2AE (Canonical Correlation Analysis Autoencoder): Utiliza andlise
de correlagdo candnica com uma estrutura de autoencoder para aprender ma-
peamentos de caracteristicas que sejam eficazes, conforme descrito por [Yeh
et al. 2017]. Esse método é particularmente 1til para problemas multi-rétulo

complexos.

o JBNN (Joint Binary Neural Network): Em vez de uma func¢io softmax,
o JBNN utiliza multiplas func¢des logisticas para modelar rétulos diferentes,
capturando a correlacdo entre rétulos por meio de uma funcao de perda de

entropia cruzada bindria conjunta [He e Xia 2018].

« HNOML (Hybrid Noise-tolerant Multi-Label Learning): Proposto por
[Zhang, Yu et al. 2019], o HNOML aborda tanto o ruido nos rétulos quanto nas
caracteristicas através de regularizagao bi-espacial e enriquecimento de rétulos,

melhorando a robustez e o desempenho em conjuntos de dados com ruidos.

e ML-TSK FS (Multi-Label Takagi-Sugeno-Kang Fuzzy System): Esse
modelo aplica o processo de inferéncia Takagi-Sugeno-Kang (TSK) com base
em regras fuzzy, conforme [Lou et al. 2021]. Ele é projetado para aprender as
relagbes entre caracteristicas e rotulos enquanto minimiza a perda por regres-

s&o, proporcionando previsdes mais precisas.

Esses métodos representam algumas das técnicas mais proeminentes na classi-
ficacdo multi-rétulo, ilustrando tanto as abordagens de transformagao de problema
quanto de adaptacdo de algoritmos. A escolha da técnica depende da complexi-
dade do problema, da correlacdo entre rétulos e da necessidade de interpretacdo dos
resultados. Em seguida, apresentamos algumas das aplica¢cdes onde sdo usados os

classificadores multi-rétulo.
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Aplicagoes da Classificagao Multi-rétulo

Na vida real, muitos dominios produzem dados que nao podem ser adequadamente
descritos por apenas um tnico rétulo. Em vez disso, uma unica instancia frequen-
temente representa multiplas caracteristicas ou esta associada a multiplos conceitos
simultaneos. Esse tipo de complexidade motiva o uso e o estudo de classificadores

multi-rétulo, pois eles sdo capazes de lidar com situagdes em que uma instancia pode

pertencer a varias classes de forma simultanea.

Referéncia Dominio Descrigao Rétulos
[Blockeel, Dze- Modelagem am- Predigdo de qualidade da agua Vérios pardmetros
roski e Grbovié biental em rios com multiplos pardme- de qualidade
1999] tros

[Grady e Funka- Medicina Segmentac¢ao multi-rotulo de te- Diferentes  teci-
Lea 2004] cidos em imagens médicas dos/6rgaos
[Boutell et al. Imagens Classificacdo de cenas com mul- Rétulos como
2004] tiplos objetos praia, urbano
[Katakis, Tsou- Redes sociais Deteccao de spam em sistemas Rotulos para

makas e Vlahavas
2008]

de marcadores sociais

spam/nao spam

[Briggs, Lakshmi-
narayanan et al.
2012]

Audio

Identificacdo de espécies de aves

em gravacoes

Até 13

por gravacao

espécies

[Ratnarajah e Qiu
2014]

Medicina

Segmentacao de estruturas cere-

brais em neonatos

Diferentes estrutu-

ras cerebrais

[Schulz, Mencia e
Schmidt 2016]

Ciéncias sociais

Classificac@o de incidentes urba-

nos em tweets

Tipos de inciden-
tes (acidente, in-

céndio, etc.)

[Haobo Wang et Comércio Deteccado de fraude em e- Roétulos: fraude,

al. 2021] commerce seguranca, Trisco,
autenticacao

[Deniz, Erbay e Comércio ele- Classificacdo de opinides de cli- Opinides  positi-

Cosar 2022] tronico entes vas, negativas,
neutras

Tabela 2.4: Aplicagbes da classificagdo multi-rétulo em diferentes

dominios

A Tabela 2.4 resume algumas dessas aplicagoes, destacando a diversidade de do-

minios onde a classificacdo multi-rétulo se mostra indispensavel. Como é possivel
observar, esses dados vém de diversas areas, como modelagem ambiental, redes so-
ciais, dudio, comércio eletronico e afins, ilustrando a versatilidade e a importancia
do paradigma multi-rotulo. Essas aplicacbes demonstram a diversidade de rétulos

atribuidos a uma mesma instancia reflete a complexidade dos dados do mundo real,
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tornando o paradigma multi-rotulo uma ferramenta essencial para capturar a to-
talidade de informacgoes presentes em cada observacdo. A seguir, apresentamos os

principais desafios enfrentados pela classificagdo multi-rétulo.

2.1.6 Desafios da Classificagao Multi-rétulo

Os desafios da classificacdo multi-rétulo devem-se & complexidade intrinseca dos
dados e as caracteristicas tinicas deste tipo de problema. Em contraste com a clas-
sificacdo binaria ou multi-classe, a classificacdo multi-rétulo exige que o modelo lide
com a possibilidade de que cada instancia pertenca a multiplas classes simultanea-
mente, o que gera questoes especificas que precisam ser abordadas para que o modelo

seja eficiente. Abaixo estdao os principais desafios:

e Correlagoes entre Roétulos: Um dos maiores desafios na classificacdo multi-
rétulo é modelar as correlagoes entre rotulos, pois, ao contrario da classificagao
tradicional, os rétulos em um cendrio multi-rotulo geralmente nao sdo inde-
pendentes. Frequentemente, a presenca de um rétulo aumenta a probabilidade
de ocorréncia de outro. Por exemplo, uma musica classificada como rock pode
também ser classificada como alternativa, devido as caracteristicas comparti-

lhadas entre esses géneros [Herrera et al. 2016].

e Desequilibrio de Classes e Dimensionalidade Alta: Outro desafio recor-
rente em tarefas de classificacdo multi-rotulo é o desequilibrio de classes, que
ocorre quando alguns rétulos aparecem muito mais frequentemente que outros
no conjunto de dados. Esse problema se agrava em cenarios de alta dimensio-
nalidade, onde o niimero de rétulos é elevado, aumentando a complexidade do

modelo e o risco de sobreajuste [Mitchell 1997].

e Imprecisao, Incerteza e Ambiguidade na Classificagcao Multi-rétulo

Em contextos de classificacdo multi-rétulo, é comum enfrentar problemas de
imprecisdo, incerteza e ambiguidade nos dados, que podem comprometer a
precisao dos modelos. Esses problemas sdo préprios dos dados multi-rétulo e

do processo de atribuir varios rétulos a uma mesma instancia.

— Imprecisao: Ocorre quando os dados de entrada possuem caracteristicas
que podem ser interpretadas de diversas maneiras, dificultando a deter-
minacao exata dos rétulos. Esse problema é particularmente relevante em
tarefas de andlise de sentimentos, onde uma frase pode conter elementos
positivos e negativos ao mesmo tempo, gerando interpretacoes ambiguas
[Herrera et al. 2016].

— Incerteza: Refere-se a probabilidade de que uma instancia pertenca a

miltiplos rétulos com diferentes graus de confianca. Para lidar com esse
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tipo de incerteza, métodos baseados em teorias de probabilidade e logica
fuzzy sdo amplamente utilizados, permitindo modelar a associagdo com
cada rétulo e suavizar transigoes entre rétulos [Suthaharan 2016; Keller
et al. 2016].

— Ambiguidade: Surge em casos onde ha sobreposicdo de caracteristi-
cas entre rétulos, dificultando a distincao pelo classificador. Esse é um
problema comum em tarefas de classificacao de imagens complexas, onde
multiplas categorias podem estar representadas visualmente em uma mesma,
imagem, criando desafios para a separagao de rétulos [Mitchell 1997; Al-
paydin 2010].

Esses desafios exigem o uso de técnicas avancadas, como modelos probabi-
listicos, redes neurais adaptativas e sistemas fuzzy, que sdo projetados para
manejar altos niveis de incerteza e ambiguidade nos dados [Keller et al. 2016].
A seguir, abordaremos os sistemas neuro-fuzzy, uma técnica eficaz para lidar

com complexidades e incertezas em classificacdo multi-rétulo.

2.2 SISTEMAS NEURO-FUZZY

Os Sistemas Neuro-Fuzzy (SNF) combinam as capacidades das Redes Neurais Arti-
ficiais (RNA) e dos Sistemas de Inferéncia Fuzzy (SIF). Essa integracao busca me-
lhorar a habilidade de aprendizado das redes neurais com a interpretabilidade dos
sistemas fuzzy, criando modelos que podem lidar com dados complexos e adaptar-se
a mudangas. [Kosko 1992; Jang, Jyh-Shing et al. 1997; Chen e Pham 2000].
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Figura 2.7: Arquitetura de um Sistema Neuro-fuzzy

A Figura 2.7 ilustra a arquitetura de um sistema neuro-fuzzy, onde as camadas

das redes neurais interagem com o sistema de inferéncia fuzzy para criar um sistema
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hibrido que combina aprendizado e interpretabilidade. Nas préximas secoes, explo-
raremos mais profundamente as Redes Neurais Artificiais e os Sistemas de Inferéncia

Fuzzy.

2.2.1 Fundamentos de Redes Neurais Artificiais (RNA)

As Redes Neurais Artificiais (RNA) sao inspiradas no funcionamento do cérebro
humano e surgiram com os trabalhos pioneiros de Fitch e Pitts [Fitch 1944]. Com-
postas por neurdnios artificiais conectados por meio de sinapses ponderadas, as RNA
tém a capacidade de aprender padroes complexos a partir de grandes conjuntos de

dados, sem necessidade de programacao explicita para cada tarefa.

Componentes Fundamentais das RNA

As redes neurais utilizam componentes fundamentais que sdo cruciais para sua ca-
pacidade de aprendizado e adaptacdo. Entre esses componentes temos, o neurénio

biolégico, o bias e a funcao de ativacao.

e Neurdnio Bioldgico e Artificial: Um neurdnio artificial, assim como um
neurdnio biolégico, processa entradas e gera uma saida com base em uma

funcao de ativagao.

b
N\, Corpo X,

wl
Dendritos Axonio
w2 z y
N X
— W
Telomero

X, N

Diregao do sinal

Figura 2.8: Comparativo entre o neurénio biolégico e o neurdnio
matematico.

A Figura 2.8 destaca a analogia entre o neurdnio biolégico e o neurénio mate-
matico, mostrando como entradas ponderadas sao processadas por uma funcao

de ativacdo para gerar uma saida.
Os componentes principais de um neurénio matematico incluem:
— a: Vetor de entradas, onde cada componente x; representa uma caracte-
ristica.

— w: Vetor de pesos, onde cada w; indica a importancia da entrada corres-

pondente.
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— >_: Soma ponderada das entradas.
— f: Funcéao de ativagao.

— b: Bias, que ajusta a entrada da funcdo de ativagao.

A operagdo do neurdnio pode ser descrita pelas seguintes equagoes [Haykin
2001, p.37]:

n

Uk = Y W
i=1

Yk = [ (ug + by)

A

Campo local Bias b, >0
induzido, v, b =0
b <0

Saida do combinador

linear u,

v

Figura 2.9: Efeito do bias sobre o campo local induzido.

A Figura 2.9 ilustra o impacto do bias: valores negativos diminuem o poten-
cial de ativacdo, enquanto valores positivos aumentam, ajustando a funcéo de

ativagao para otimizar a resposta do neurénio.

e Funcgoes de Ativagao: Sao elementos essenciais em redes neurais, pois intro-
duzem nao-linearidade nas saidas dos neur6nios, permitindo que a rede capture
padroes complexos nos dados. A escolha da funcdo de ativacdo depende do
tipo de rede neural e do problema especifico. A Tabela 2.5 resume as prin-
cipais fungoes de ativagdo, suas formulas, redes neurais associadas, e graficos

que ilustram o comportamento de cada funcéo.
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Tipo Funcao f(s) Rede Neural Grafico
Linear f(s)=s Hopfield, BSB -

+1 ses>0
Sinal f(s) = Perceptron N
-1 ses<0 ]
+1 ses>0 I
Degrau fls) = Perceptron, BAM
0 se s <0
) ) 1 Perceptron, redes /
Sigmoidal f(8) = 5=
+e profundas /
s ses>0 Redes
ReLU f(s) = Convolucionais,
0 ses<0 —_— T
redes profundas
Classificacdo
e5i multi-classe, camada /
Softmax f(si) = ST e )
J de saida de redes
profundas
Perceptron,
Tangente f(s) = tanh(s) = P /
] . |25 Hopfield, BAM,
Hiperbdlica T BSB

Tabela 2.5: Funcgoes de Ativacdo e Redes Neurais

Arquitetura de RNA

Uma rede neural é composta por multiplas camadas: camada de entrada, camadas

ocultas e camada de saida, cada uma desempenhando um papel essencial no proces-

samento dos dados. Essas camadas determinam a complexidade e a capacidade de

generalizacao da rede.

Entre as arquiteturas mais conhecidas estéo:

e Perceptron Simples: O perceptron simples é o modelo mais béasico de uma

rede neural, composto por uma unica camada de nés de entrada conectados

diretamente a uma saida. Ele aplica uma fun¢do de ativagdo ao resultado de

uma combinacdo linear ponderada das entradas. Embora seja eficiente para

problemas linearmente separaveis, suas limitagoes aparecem ao lidar com dados

que ndo seguem essa caracteristica.

o Perceptron Multicamadas (MLP - Multi-Layer Perceptron): O per-

ceptron multicamadas é uma extensao do perceptron simples, incorporando

uma ou mais camadas ocultas entre as entradas e a saida. Com funcoes de
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ativagdo nao lineares, como ReLU ou sigmodide, ele pode aprender relagoes
complexas e nao lineares nos dados. Essa arquitetura é amplamente usada em

tarefas de classificacio, regressdo e previsao.

+ Redes Neurais Feedforward (FFNN) As redes neurais feedforward gene-
ralizam o perceptron multicamadas, permitindo o fluxo unidirecional da infor-
magao, da entrada até a saida. Elas sdo simples de treinar e entender, sendo
amplamente aplicadas em problemas de previsao, classificacdo e modelagem de
dados estaticos. Por sua simplicidade estrutural, sdo a base para redes mais

avancadas.

o Redes com Funcdes de Base Radial (RBF): As redes de funcao de base
radial utilizam fungoes de base radial como ativacdo para modelar dados nao
lineares. Essas fungoes medem a distancia entre os dados de entrada e um
ponto central, proporcionando flexibilidade na classificacdo e regressao. Sao
ideais para problemas onde é necessaria uma interpolagdo precisa ou a apro-
ximacao de func¢bes complexas, sendo amplamente aplicadas em aprendizado

supervisionado.

+ Redes Convolucionais (CNN - Convolutional Neural Networks): As
CNNs sao especializadas no processamento de dados com estrutura espacial,
como imagens e videos. Utilizam camadas convolucionais para extrair ca-
racteristicas locais e camadas de pooling para reduzir a dimensionalidade,
preservando informagdes essenciais. FElas sdo amplamente usadas em visao

computacional, como no reconhecimento de imagens e na detec¢do de objetos.

* Redes Recorrentes (RNN - Recurrent Neural Networks): As RNNs
sado projetadas para lidar com sequéncias temporais ou dados ordenados, uti-
lizando conexdes que introduzem memoéria nas iteragoes. Variedades como
LSTM e GRU resolvem problemas de longo prazo, como o desaparecimento
do gradiente em sequéncias longas. Essas redes sao amplamente aplicadas em

traducdo automatica, séries temporais e processamento de linguagem natural.
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Vetor de
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Figura 2.10: Arquitetura de uma Rede Perceptron Multicamadas.

A Figura 2.10 exemplifica uma arquitetura MLP, onde véirias camadas ocultas

ajudam a capturar padroes complexos em dados para tarefas de classificacao.

Vetor de Linear
Entrada < Y

)

J\_Gaussiana

Figura 2.11: Arquitetura de uma Rede com Fungoes de Base Radial.

A Figura 2.11 apresenta uma rede RBF, usada principalmente para aproximacao
de funcées e problemas de classificacio onde a posicdo dos dados no espacgo de

entrada é relevante.

Aprendizado de RNA

O aprendizado consiste em ajustar os pesos das conexbdes com base nos dados de
entrada, o que pode resultar na criagdo, modificacdo ou remocgao dessas conexoes..
Quando o peso de uma conexao é zero, ela é considerada inexistente. O aprendizado
continua até que esses pesos se estabilizem, indicando que a rede conseguiu aprender
ou captar o padrao desejado. Cada rede possui critérios proprios para ajustar esses
pesos, conhecidos como regras de aprendizado, que definem o tipo de aprendizado:

supervisionado ou nédo supervisionado e por reforgo.

e Supervisionado: A rede é treinada com pares de entrada e saida conhecidos.
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e Nao Supervisionado: A rede identifica padroes por si mesma, ajustando-se

de forma auténoma aos dados disponiveis.

o Por Reforco: A rede ajusta-se com base em recompensas e penalidades.

Algoritmo de treinamento

Os algoritmos de treinamento para redes neurais podem ser classificados em duas
categorias principais: algoritmos supervisionados e algoritmos nao supervisionados,
cada um com objetivos e métodos distintos que refletem a forma como a rede processa
e aprende com os dados. Dentro dos algoritmos de aprendizado supervisionado, o
algoritmo de retropropagacao é o método mais amplamente utilizado para treinar

redes neurais.

o Algoritmo de Retropropagacgio (backpropagation): O algoritmo de re-
tropropagacao permite que a rede aprenda de maneira eficiente ajustando os
pesos camada por camada, a partir da minimizacao do erro com base no mé-

todo do gradiente.

— Correcao de erro: a rede ajusta os pesos imediatamente apés a apre-
sentacdo de cada padrao de entrada, corrigindo o erro na saida de forma
direta e pontual. Esse método oferece um ajuste responsivo, pois a rede

corrige seus parametros constantemente.

Figura 2.12: Correcdo de erro

— Método do gradiente: os pesos sdo atualizados para minimizar o erro
quadratico médio, considerando todos os padroes de entrada. Esse pro-
cesso de minimizacao leva os pesos na direcdo oposta ao gradiente da
funcdo de erro, resultando em uma abordagem mais estavel e robusta,
que visa otimizar a precisdo global da rede ao longo de todo o conjunto
de dados.
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Figura 2.13: Gradiente descendente

Passos da Retropropagacgao
1. Inicializagao dos Pesos:

e Os pesos w;; sao inicializados aleatoriamente para cada conexao entre os

neurdnios.
2. Propagacao Direta (Forward Pass):

« Calcula-se a saida y; de cada neurdnio aplicando a func¢ao de ativacio o

a soma ponderada das entradas:
zZj = E ’Ujij-xi—l-bj
i

yj = o(2)
3. Calculo do Erro:

e O erro total E é calculado comparando a saida prevista § com a saida

desejada y, usando uma funcao de perda (exemplo: erro quadratico):

1

E= 9 Z(yk - ?)k)z
k

4. Retropropagacao do Erro (Passo Reverso):

e Calcula-se o gradiente do erro em relacdo a cada peso. Para o neur6nio
de saida k:

ok = (yk — ) - o' (2)
o Propaga-se esse erro para ajustar cada peso das camadas anteriores.

5. Atualizacao dos Pesos:
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» Ajusta-se os pesos w;; usando a taxa de aprendizado 7:
Wij 4= wij — 105 Yi

6. Repeticao:

e Repete-se o processo para todas as amostras até que o erro seja minimi-

zado ou satisfaca um critério de parada.

FASE FORWARD (alimenta¢do para frente)

>

<

FASE BACKWARD (alimentagio para tras)

Figura 2.14: Algoritmo de Retropropagacio.

A Figura 2.14 mostra o fluxo do algoritmo de retropropagagdo, onde o erro é

propagado de volta na rede para ajustar os pesos e melhorar a precisao.

Estruturas das Redes Neurais Artificiais

As redes neurais podem ser classificadas pela arquitetura e pelo método de apren-

dizado [Haykin 2001]. As principais arquiteturas sao:

o Feedforward (Alimentacdo Direta): Nesta arquitetura, o sinal é propa-
gado em uma Unica direcao, da camada de entrada até a camada de saida, sem

ciclos ou feedback.

o Rede Recorrente (RNN): Diferente das redes feedforward, as redes recor-
rentes possuem conexoes de feedback, permitindo que informagoes de passos

anteriores influenciem os estados futuros da rede.

o Rede Convolucional (CNN): Utilizadas para anélise de imagens e dados

com estrutura espacial.

+ Rede de Fungoes de Base Radial (RBF): Com fungdes de ativagao radial,

aplicdveis a problemas de classificacao e regressao.
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Vantagens das RNAs

e Capacidade de Aprendizado Adaptativo: As redes neurais possuem uma,
habilidade notavel de aprendizado adaptativo, ajustando-se a partir de gran-
des volumes de dados para melhorar o desempenho de tarefas especificas sem

necessidade de reprogramagao manual para cada caso [Haykin 2001].

¢ Reconhecimento de Padrées Complexos: Sao especialmente eficazes em
tarefas como reconhecimento de padroes e classificagdo, onde conseguem iden-
tificar correlagdes complexas e sutis nos dados que métodos tradicionais nao

conseguem capturar [Oliveira 2007].

¢ Robustez e Tolerincia a Falhas: A arquitetura distribuida das redes neu-
rais confere a elas uma alta tolerincia a falhas, mantendo um bom desempenho
mesmo quando algumas conexdes ou neurdnios apresentam problemas [Jang e
Jyh-Shing 1993].

e Versatilidade em Diferentes Aplicagdes: Sdo amplamente utilizadas em
areas como visao computacional, processamento de linguagem natural e siste-
mas de recomendagdo, provando-se versateis para diversas aplicacoes de inte-

ligéncia artificial [Kasabov 2002].

e Capacidade de Generalizagdao: Redes neurais sdo capazes de generalizar
bem ao serem expostas a novos dados, o que as torna ideais para aplicagoes em
ambientes dindmicos e incertos, onde os dados estao em constante mudanca
[Lee e Lin 1991].

o Integracao com Outros Sistemas Inteligentes: Combinadas com a logica
fuzzy, as redes neurais sao capazes de formar sistemas neuro-difusos, unindo a
capacidade de aprendizado adaptativo com a habilidade de lidar com incertezas

e imprecisoes em dados reais [Zadeh 1965].

Com a compreensao das estruturas das redes neurais artificiais, seguimos agora para
a proxima secdo, onde exploraremos os fundamentos dos Sistemas de Inferéncia

Fuzzy.

2.2.2 Fundamentos dos Sistemas de Inferéncia Fuzzy (SIF)

Os sistemas de inferéncia fuzzy sdo amplamente reconhecidos por sua capacidade
de lidar com incertezas e complexidades em uma vasta gama de aplicacdes, como
controle de processos, modelagem e previsdo. Ao contrario dos sistemas tradicionais,
que operam com limites rigidos e defini¢Ges exatas, os sistemas fuzzy utilizam graus
de verdade para representar informagoes, proporcionando uma abordagem mais fle-

xivel e adequada ao mundo real [Chen e Pham 2000]. Essa flexibilidade permite
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que os sistemas fuzzy capturem nuances e variacoes sutis, tornando-se valiosos em
contextos onde a incerteza e a gradualidade das transigoes prevalecem [Ross 2004;
Cox 1994; Keller et al. 2016].

Componentes Fundamentais dos SIF

Para compreender adequadamente os sistemas de inferéncia fuzzy, é essencial come-

car pela defini¢do de conceitos fundamentais como:

e Conjuntos Fuzzy e Fun¢ao de Pertinéncia A teoria dos conjuntos fuzzy
foi introduzida por Lotfi Zadeh em 1965, para lidar com a incerteza e a vagui-
dade inerentes a muitos conceitos do mundo real. Ao contrario dos conjuntos
classicos, onde um elemento pertence totalmente ou nao ao conjunto, os con-
juntos fuzzy permitem que os elementos tenham graus varidveis de pertinéncia,
que variam entre 0 e 1, capturando nuances e transi¢oes graduais que sao co-
muns em termos linguisticos, como temperatura agraddvel ou altura moderada
[Zadeh 1965].

Definicao 3. (Conjunto Fuzzy) Um conjunto fuzzy A em um universo X €

representado por:
A={(z,pa(z)) |z € X}

onde pg : X — [0,1] € a fungdo de pertinéncia que associa a cada elemento
x € X um grau de pertencimento pa(x), que varia entre 0 e 1. Esse valor
indica o quao fortemente o elemento x pertence ao conjunto A, de acordo com
0s critérios a sequir: pa(x) = 0: x ndo pertence ao conjunto. pa(x) =1: x
pertence completamente ao conjunto. 0 < pa(x) < 1: z pertence parcialmente

ao conjunto, com o grau de pertencimento proporcional ao valor de pia(x).

= 1 4

|8}

=

<«

=

N

g p,(x) \» Fungdo de

2 1 pertinéncia

S |

@ |

3 >
0 X

Dominio do conjunto fuzzy

Figura 2.15: Componentes de um Conjunto Fuzzy

A Figura 2.15 ilustra a definicio de um conjunto fuzzy. A funcio de per-
tinéncia pa(z) associada ao conjunto fuzzy A atribui a cada elemento z no

dominio X um grau de pertinéncia entre 0 e 1. Na imagem, vemos como a
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funcdo de pertinéncia varia gradualmente, refletindo a transigdo suave de nao

pertencimento para pertencimento total.

Tipos de fungoes de pertinéncia: Existem diferentes tipos de funcoes de
pertinéncia na Figura 2.16, sdo apresentados trés formatos comuns de fungoes
de pertinéncia. A funcao triangular é simples e facil de interpretar, enquanto
a trapezoidal é 1til para representar intervalos mais amplos de pertinéncia.
A funcdo gaussiana, por sua vez, oferece uma transicdo mais suave entre os

diferentes graus de pertinéncia.

Triangular Trapezoidal Gaussiano
----------------- E-------------- 1 ‘l

Figura 2.16: Fungdes de Pertinéncia: Triangular, Trapezoidal e Gaus-

siana.
Funcdes de Pertinéncia Férmulas
=, sexc (a,b
Triangular: @) = <L sexe (b
0, outro caso
i~ sex € (a,b
] 1, se x € (b,
Trapezoidal: pulx) =
=z sex € (c,d]
0, outro caso
Gaussiana: w(z) = exp {— %;?2}

Tabela 2.6: Férmulas de Fungoes de Pertinéncia

Na Tabela 2.6 sdo apresentadas as formulas matematicas das fungoes de per-
tinéncia da Figura 2.16. Essas fungoes de pertinéncia podem ser escolhidas
de acordo com o nivel de precisdo desejado, a simplicidade do modelo e as
caracteristicas do problema a ser modelado. Sao amplamente utilizadas para
lidar com a incerteza em sistemas fuzzy, permitindo uma representagao flexivel

de situagoes complexas [Ross 2004].

Variavel Linguistica e Termo Linguistico
Uma varidvel linguistica x, definida no universo X, é uma variavel cujos valores
sao subconjuntos fuzzy de X. Zadeh [Zadeh 1975] definiu uma varidvel lin-

guistica como uma varidvel cujos valores sdo expressos em termos de palavras
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ou frases em uma linguagem natural ou artificial, permitindo a representacao
de conceitos subjetivos ou ambiguos de forma quantitativa.

A vantagem do uso de variaveis linguisticas é que elas permitem descrever fend-
menos complexos de maneira intuitiva e flexivel, utilizando termos linguisticos

que refletem a forma como os humanos interpretam e compreendem a realidade
[Ross 2004].

Exemplo: A varidvel temperatura pode assumir termos linguisticos como
baiza, média e alta ver Figura 2.17, cada um desses valores linguisticos corres-
ponde a um subconjunto fuzzy do universo de discurso, que, para essa variavel,

poderia ser o intervalo de temperaturas entre 0°C e 40°C.

TEMPERATURA <« Variavel Linguistica

P Termos Linguisticos
A e Regra Semantica
A
> < Universo
X

Figura 2.17: Variaveis Linguisticas e Termos Linguisticos.

A Figura 2.17, mostra como a wvaridvel linguistica Temperatura é descrita por
valores linguisticos: Baiza, Média e Alta. Cada termo linguistico tem uma
funcao de pertinéncia que determina o grau de associacao de qualquer valor de
temperatura a essas categorias qualitativas, permitindo que o sistema trabalhe

com descri¢es interpretaveis.

e Loégica Fuzzy

A légica fuzzy é uma extensao da logica classica desenvolvida para lidar com
incertezas e imprecisoes ao invés de valores bindrios estritos de verdadeiro e
falso. Introduzida por [Zadeh 1975] , a logica fuzzy permite graus interme-
diarios de verdade, onde proposi¢oes podem ter valores continuos entre 0 e 1.
Esse modelo é particularmente ttil em situagdes onde os conceitos nao sao es-
tritamente definidos, permitindo uma representacdo mais flexivel e adaptavel
de fené6menos complexos [Chen e Pham 2000].

Com a légica fuzzy, é possivel representar condigoes e inferéncias utilizando

variaveis linguisticas e conjuntos fuzzy, criando assim um sistema que pode
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lidar com informagoes imprecisas. Para isso, sdo usados operadores como a
conjungao (AND), a disjuncdo (OR) e o complemento (NOT) que permitem

combinar condi¢es de forma gradual atribuindo graus de verdade entre 0 e 1.

Operador Férmula Fuzzy Descrigao
Conjuncio ang(z) = min(pa(z), up(z)) ou  Combina condi¢ées usando o menor
(AND) pars(x) = pa(x) - pp(x) grau ou produto dos valores.
) = max z), up(z)) ou
L Havi(@) (1a(@), i (=) Permite combinar alternativas to-
Disjungao (OR) pav(z) = .
mando o maior grau ou soma.
pa(@) + pp(x) — pa(z) - pp(@)
Complemento Calcula o grau de nao-pertinéncia de
poa(x) =1 — pa(z) L
(NOT) uma condicdo fuzzy.

Tabela 2.7: Operadores Fuzzy e suas Formulas

Esses operadores sdo essenciais para construir inferéncias flexiveis: a conjuncao
permite combinar condigdes que devem ocorrer simultaneamente a disjuncao
considera alternativas e o complemento reflete a auséncia ou negacdo de uma
condicdo. A lbgica fuzzy, forma a base para a criacdo de regras fuzzy e é
fundamental na modelagem de sistemas que operam sob condic¢oes de incerteza
e imprecisao [Zadeh 1975; Ross 2004].

Regras Fuzzy e o Raciocinio Se-Entao: Uma vez estabelecidos os conjun-
tos fuzzy e as varidveis linguisticas, o préximo passo é estruturar o conheci-
mento em regras fuzzy do tipo "se-entao". As regras fuzzy sao utilizadas para
capturar o raciocinio humano de maneira formalizada, conectando condi¢bes

a agOes ou respostas especificas. Cada regra segue a estrutura bésica:
Se (condi¢io), Entdo (agio ou consequéncia).
Por exemplo, uma regra fuzzy poderia ser:
Se a temperatura € alta e a umidade é baira, entdo aumentar o fluxo de ar.

Essa regra utiliza varidveis linguisticas e seus respectivos conjuntos fuzzy para

descrever uma condi¢ao antecedente e associd-la a uma acdo consequente.
— O antecedente (parte se) especifica as condigoes que devem ser avaliadas.
— O consequente (parte entdo) define a acao a ser executada caso as con-

digoes sejam atendidas.

Cada regra fuzzy é ativada em graus proporcionais ao grau de pertencimento
das varidveis de entrada aos conjuntos fuzzy especificados no antecedente da

regra. Esse grau de ativagdo permite que o sistema fuzzy interprete situagoes
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complexas e tome decisoes de forma gradativa e adaptativa, o que é especial-
mente 1til em sistemas de controle e decisdo com informagoes imprecisas [Cox
1994; Kosko 1992].

e Agregacao dos Antecedentes e Consequentes nas Regras Fuzzy

A agregacdo dos antecedentes e consequentes em regras fuzzy é crucial para
o processo de inferéncia fuzzy, pois permite combinar miltiplas condigoes e

respostas de maneira coerente.

— Agregacao dos Antecedentes: A combinac¢ao dos antecedentes deter-
mina o grau de ativagdo da regra, dependendo da satisfacdo das condigoes
de entrada. Operadores como o minimo e o produto sdo amplamente usa-
dos para calcular essa ativacao, com o minimo exigindo que todas as con-
dicbes sejam cumpridas ao menor grau, enquanto o produto proporciona

uma ativagdo proporcional as condigoes [Uebele 1995; Bezdek 1999].

— Agregacao dos Consequentes: A combinac¢ao dos consequentes per-
mite integrar as saidas de multiplas regras para obter uma resposta tnica.
Métodos como a média ponderada garantem que as regras mais forte-
mente ativadas tenham maior influéncia na saida final [Bouchon-Meunier
1998|.

A agregacao dos antecedentes e consequentes ajuda os sistemas fuzzy a res-
ponderem de forma adaptativa e precisa em cenarios com incertezas e interde-

pendéncia.

Sistema de Inferéncia Fuzzy (SIF)

O sistema de inferéncia fuzzy é uma estrutura que transforma entradas numéricas em
conjuntos fuzzy (fuzzificacio), aplica regras do tipo SE-ENTAOQ para relacionar essas
entradas as saidas, combina os resultados das regras (agregacao) e, por fim, converte
o resultado em um valor concreto (defuzzificagdo). Esse processo é especialmente 1til
em problemas onde os dados sao incertos ou vagos, como no controle de processos
industriais e na tomada de decisdo em sistemas complexos [Ross 2004].

Os modelos de inferéncia fuzzy de Mamdani (criado por Ebrahim Mamdani em
1975) e Takagi-Sugeno-Kang (TSK) (desenvolvido por Takagi e Sugeno em 1985)
sdo os mais utilizados em sistemas fuzzy. A principal diferenca entre os modelos de
Mamdani e TSK estd na forma dos consequentes das regras no processo de saida. O
modelo Mamdani gera uma saida fuzzy que precisa ser defuzzificada, o que facilita a
interpretabilidade, sendo ideal para aplica¢des que requerem ajustes manuais, como
o controle industrial tradicional. Ja o modelo TSK néo precisa ser defuzzificada,

pois produz uma saida numérica direta via fungdes consequentes, é mais eficiente
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e preciso, tornando-se preferido para sistemas que exigem resposta rapida e alta
precisdo [Ruspini e Patrone 1998; Ross 2004]. A Figura 2.18 ilustra o fluxo completo
do sistema de inferéncia fuzzy, dividindo-o em trés operacoes principais. Também,
podemos observar duas abordagens de saida para sistemas fuzzy: a saida de tipo
Mamdani (parte superior) e a saida TSK (parte inferior). A seguir, descrevemos as

etapas do processamento no modelo TSK, com base na Figura 2.18 apresentado.

Ma) X, M)
4, 4, 4 il
4 e S ¢
Mgy ) 1 c . Gy Cy,
X A, ‘RG Head) L, X
Was(xy ) = Hes) ]
X *1 A3 NN Rs R9 )’* Y
Fuzzificacao Motor de Inferéncia Defuzzificacido
X1 Se
_—
]

Ugi(x2)

Mgy (x; )

Hp(xy )

Entao

R,:Se x, ¢4, ex, B,
R :Se x é4, ex, B,,
R¢:Se x, ¢4, ex, B,
R,:Se x, ¢4, ex, B,

entdo y = f,(x,,x,)
entdo y = fi(x,,x,)
entdo y = fi(x,,x,)

entdo y = f1(x,x,)

Figura 2.18: Sistema de Inferéncia Fuzzy.

No modelo TSK, os sistemas fuzzy produzem saidas nitidas (crisp) através de
uma combinacao ponderada dos consequentes das regras. Cada regra gera uma saida

numérica diretamente, eliminando a necessidade de defuzzificacao.

e Fuzzificagdo: Na etapa de fuzzificacdo, os valores de entrada z1 e o sdo
convertidos em graus de pertinéncia para os conjuntos fuzzy corresponden-
tes. Esses conjuntos fuzzy sao representados por suas funcoes de pertinéncia,
pa,(z1) para a varidvel z1 e pup;(72) para a varidvel zz. Cada valor de en-
trada é associado a um grau de pertencimento para diferentes conjuntos fuzzy,
por exemplo, Ay, Ao, A para x1; B1, By, B3 para x3, conforme ilustrado na
imagem.

pa;(r1) e pp;(r2)

¢ Motor de Inferéncia: No modelo TSK, o motor de inferéncia é composto por

duas sub-etapas principais: a avaliagdo das regras e a agregacao dos resultados.

— Avaliacado das Regras: Cada regra fuzzy é ativada de acordo com os
graus de pertencimento dos antecedentes. No modelo TSK, cada regra

Ry, é expressa como Se x1 é A; e xo é Bj, entdo y = fr(x1,x2), onde
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fr(x1,2) é uma funcao linear ou constante das variaveis de entrada. Por

exemplo, uma regra especifica poderia ser:
Ry :Se x1 é Az e x9 é By, entdo y = fa(x1,22) = pax1 + qaxa + 14

O grau de ativagdo da regra R é determinado pelos operadores minimo
ou produto que sdo generalizagoes da intersecao classica, que combina os

graus de pertinéncia dos antecedentes:
Ativacdo de Ry, = min(ua,(71), up;(r2)) ou H(NAi (z1), B, (72))

— Agregacao dos Resultados: Diferente do modelo de Mamdani, onde
a saida é um conjunto fuzzy, no modelo TSK cada regra gera uma saida

nitida fi(z1,z2) que serd agregada na saida final.

e Saida Final: A saida final do sistema é calculada por uma média ponderada
das saidas das regras, ponderadas pelo grau de ativacdo de cada regra. A saida

final y é dada por:

Yo Ativacao de Ry - fi(w1,72)
N >, Ativacao de Ry

Esse método de ponderagdo combina as contribuicdes de cada regra para ge-
rar uma resposta precisa e direta, eliminando a necessidade de defuzzificagao.
Além disso, é computacionalmente eficiente, ja que evita o processo de defuz-
zificagdo, o que é especialmente Util em aplicagdes que demandam respostas

rapidas e precisas, como em sistemas de classificacao.

Embora o Sistema Takagi-Sugeno (TKS) ofereca alta precisao nas predigoes.
Os sistemas fuzzy sdo conhecidos pela sua interpretabilidade, o que significa que
eles sdo mais faceis de entender e explicar em comparacdo com outros modelos
mais complexos. Essa interpretabilidade se deve ao fato de que os sistemas fuzzy
usam regras simples no formato se-entdo. Essas regras linguisticas sdo intuitivas e
proximas da linguagem humana, facilitando a compreensao do processo de decisao
[Ross 2004; Gacto, Alcald e Herrera 2011].

Além disso, a interpretabilidade é ainda mais trabalhada através de métodos
que simplificam o sistema fuzzy. Alguns métodos reduzem o ntimero de regras e
variaveis, tornando o sistema menos complexo, ajudando a garantir que o sistema

continue facil de entender.

Modelagem da incerteza, imprecisao e ambiguidade dos SIF

A modelagem da incerteza, imprecisao e ambiguidade é essencial para a criacdo de

modelos que lidam bem com dados complexos e interpretativos. Os sistemas fuzzy
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oferecem uma abordagem flexivel [Ruspini e Patrone 1998; Ross 2004; Cox 1994], A

seguir uma explicacdo de cada um:

o Incerteza: Refere-se a falta de informagoes completas ou precisas sobre um
dado ou fendémeno. A incerteza ocorre quando ndo temos certeza absoluta
sobre a classificacdo de um dado porque as informacoes disponiveis sao in-
suficientes. Em sistemas fuzzy, a incerteza é modelada permitindo que um
elemento pertenga parcialmente a diferentes categorias, cada uma com um

grau de confianca especifico.

Exemplo 1. Em um sistema de previsdo meteorologica, a incerteza estd pre-
sente quando hd 70% de chance de chuva e 30% de chance de céu nublado,

refletindo a falta de certeza total sobre as condigoes do tempo.

o Imprecisao: A imprecisao refere-se a falta de exatidao inerente a uma descri-
¢ao ou medicdo de um fendmeno. Em vez de exigir uma divisdo exata entre os
estados possiveis, a logica fuzzy lida com a imprecisdo ao permitir gradagoes
continuas de pertencimento dentro de um conjunto fuzzy. Assim, em sistemas
fuzzy, conceitos vagos como alto ou quente sao modelados por meio de fun-
coes de pertinéncia, que indicam o grau com que um elemento pertence a

um determinado conjunto.

Exemplo 2. Para o conceito de altura, uma pessoa com 1,70 m pode pertencer
parcialmente aos conjuntos baixo e alto com diferentes graus de pertinéncia,

permitindo uma descricdo mais detalhada.

e Ambiguidade: Refere-se a possibilidade de multiplas interpretacoes para um
mesmo dado, onde cada interpretacdo pode ser igualmente valida. A ambi-
guidade ocorre quando um dado pode ser classificado de diferentes maneiras
dependendo do contexto. Em sistemas fuzzy, isso é modelado permitindo que
um dado tenha graus de pertinéncia em varias categorias ao mesmo tempo,

refletindo a diversidade de interpretagoes.

Exemplo 3. Em um sistema de recomendacdo de filmes, um filme pode ser
classificado como tanto comédia quanto drama com diferentes graus, pois o

género pode ter uma interpretacdo ambigua dependendo do ponto de vista.

Os sistemas fuzzy contribuem significativamente para os sistemas neuro-fuzzy,
ajudando-os a lidar de maneira adaptativa com dados incertos, imprecisos e ambi-
guos. Ao incorporar a légica fuzzy, os sistemas neuro-fuzzy podem classificar dados
complexos, ajustando-se as variagoes e permitindo varias interpretacoes, o que é
essencial em situacoes onde os dados nao sdo totalmente claros [Ruspini e Patrone

1998]. Além disso, os sistemas fuzzy tornam o processo de decisdo mais facil de
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entender, pois suas regras e graus de pertinéncia sdo mais interpretaveis. Isso sig-
nifica que as decisées do modelo ficam mais transparentes, permitindo que usuérios
e especialistas compreendam melhor como as predigoes sao feitas. Essa combinagao
de adaptabilidade e interpretabilidade faz dos sistemas neuro-fuzzy uma solucdo po-
derosa para problemas que envolvem dados complexos[Gacto, Alcald e Herrera 2011;
Czogala e Leski 2000].

2.2.3 Sistemas Neuro-Fuzzy (SNF)

Os Sistemas Neuro-Fuzzy combinam a habilidade de aprendizado das Redes Neurais
Artificiais (RNA) com a interpretabilidade dos Sistemas de Inferéncia Fuzzy (SIF)
[Ruspini e Patrone 1998; Czogala e Leski 2000]. Essa integracao resulta em modelos
capazes de lidar com dados incertos e vagos, adaptando-se a mudancgas e aprendendo
com novos dados. Ao unir essas duas abordagens, os sistemas neuro-fuzzy tém o
potencial de capturar relagdes complexas entre variaveis e fornecer previsoes precisas,

mantendo uma estrutura interpretavel e flexivel.

Fuzzificacao Motor de Inferéncia Defuzzificacdo

\W f 1
/\
@ Vetor de
Saida

Vetor de
entrada

Wy /s

Camada 1 Camada 2 Camada 3 Camada 4 Camada 5

Figura 2.19: Estrutura de um Sistema Neuro-Fuzzy

A Figura 2.19 ilustra a estrutura basica de um sistema neuro-fuzzy, onde a
camada fuzzy lida com a incerteza e a camada neural ajusta automaticamente os

pardmetros com base nos dados.

Estrutura dos Sistemas Neuro-Fuzzy

Essa estrutura é inspirada no perceptron multicamada de redes neurais e adapta os

pesos como conjuntos fuzzy, enquanto as fungoes de ativagao, saida e propagagao sao

configuradas para implementar uma trajetéria de inferéncia fuzzy [Ruspini 1998].
A estrutura multicamada de um sistema neuro-fuzzy é geralmente composta por

cinco camadas principais:

e Camada de Entrada: Essa camada é responsdvel por coletar as variaveis

de entrada. Cada varidvel de entrada é representada por um né que contem
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informacao vinda do ambiente, como dados de sensores ou outros tipos de

sinais.

¢ Camada de Fuzzificacado: Nessa etapa, os valores que entram no sistema
sdo convertidos em valores fuzzy, que sdo mais flexiveis e podem lidar com
incertezas. A fuzzificacdo utiliza fungdes de pertinéncia, que transformam os

valores das varidveis de entrada em graus de pertinéncia.

« Camada de Ativagdo das Regras: Aqui, cada regra fuzzy é representada
por um né. As regras do tipo SE-ENTAO sio ativadas de acordo com as
entradas fuzzificadas. Para isso, sdo utilizados operadores como o minimo ou

o produto para combinar essas entradas.

¢ Camada de Normalizagado: A normalizacao ajusta as forcas de ativacao, de
modo que a soma de todas elas seja igual a 1. Esse processo é feito para evitar
que alguma regra tenha um peso muito maior do que as outras, o que poderia

desequilibrar o resultado.

« Camada dos Consequentes: Cada regra gera uma saida especifica, usando
calculos simples nas entradas. Em muitos casos, sdo usados modelos lineares
(fungbes matematicas simples) que ajudam a criar respostas mais precisas e

continuas. Esse tipo de cédlculo é comum em sistemas como o modelo TSK.

o Camada de Saida (Defuzzificagao): Esta é a ultima camada, onde os va-
lores fuzzy gerados ao longo do processo sao convertidos novamente em valores
nitidos, ou seja, valores precisos e bem definidos no dominio numérico. Esse
valor final é uma resposta numérica que pode ser usada para agdes praticas,

como controle de equipamentos ou tomadas de decisao.

A Figura 2.19 apresenta uma visdo detalhada das cinco camadas principais,
mostrando como os sinais sdo processados desde a entrada até a saida. Este modelo
é projetado para facilitar algoritmos de aprendizado e permite a incorporagao de
conhecimentos prévios na forma de regras linguisticas, aumentando a interpretabi-

lidade do sistema.

Modelos de Sistemas Neuro-Fuzzy

Ao longo dos anos, diversos modelos neuro-fuzzy foram propostos, cada um com ca-
racteristicas especificas que visam melhorar o desempenho em aplicacdes de controle,
classificacdo, e modelagem de sistemas complexos. A Tabela 2.8 apresenta alguns
dos principais modelos neuro-fuzzy desenvolvidos entre 1990 e 2022, destacando suas
contribuicdes e arquiteturas. Os modelos listados na Tabela 2.8 mostram a evolugao

dos sistemas neuro-fuzzy desde abordagens mais tradicionais, como o ANFIS, até
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modelos modernos e especializados, como o ML-TSK FS, que incorpora técnicas de
classificacdo multi-rétulo com base em redes neurais e légica fuzzy.
Cada um desses modelos apresenta caracteristicas préprias e se destaca em dife-

rentes aplicagoes:

o FALCON e GARIC (Inicio dos anos 90): Ambos os modelos foram fun-
damentais para estabelecer as bases dos sistemas neuro-fuzzy, proporcionando
os primeiros frameworks de controle adaptativo com inferéncia fuzzy e apren-

dizado neural.

o ANFIS (1993): Este modelo é um dos mais amplamente utilizados em aplica-
¢Oes praticas, combinando logica fuzzy de Takagi-Sugeno com ajuste de para-
metros via redes neurais. Sua popularidade se deve & simplicidade e eficiéncia

para modelagem e controle.

o Modelos Evolutivos e Dindmicos (Década de 2000): Modelos como o
DENFIS e o EFUNN introduziram capacidades de evolucao e adaptacdo em
tempo real, sendo essenciais em aplicagOes que requerem atualizagao continua

e adaptacao a dados em fluxo.

o Avangos Recentes em Classificagdo Multi-rétulo (2022): O ML-TSK
FS é um exemplo de aplicagdo moderna, onde a légica fuzzy é integrada com
redes neurais para lidar com classificagbes complexas, considerando correlagoes
entre multiplos rétulos, o que é relevante em dominios como a bioinformaética

e a analise de sentimentos.

Esta visao geral dos modelos neuro-fuzzy destaca como as arquiteturas e técnicas
de aprendizado foram se diversificando e especializando ao longo do tempo, cada qual

contribuindo com caracteristicas tinicas para o avanco deste campo.
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Ano

Modelo

Descrigao

1991

FALCON

(Fuzzy Adaptive Learning Control Network), proposto por Lin e Lee,
utiliza uma estrutura de cinco camadas de inferéncia fuzzy para con-
trole adaptativo [Lin et al. 1991].

1992

GARIC

(Generalized Approximate Reasoning based Intelligence Control), um
modelo de controle adaptativo desenvolvido por Berenji, com base em

raciocinio aproximado [Berenji e Khedkar 1992].

1993

ANFIS

(Adaptive Neuro-Fuzzy Inference System), desenvolvido por Jang,
combina redes neurais com logica fuzzy de Takagi-Sugeno para ajuste

de parametros fuzzy [Jang e Jyh-Shing 1993].

1993

FUN

Proposto por Sulzberger, integra redes neurais com logica fuzzy de
Takagi-Sugeno para ajuste de parametros, com foco em modelagem
[Sulzberger, Tschichold-Gurman e Vestli 1993].

1996

FINEST

Proposto por Tano, combina redes neurais com um controlador
fuzzy baseado em regras para controle em sistemas complexos [Tano,
Oyama e Arnould 1996].

1998

SONFIN

Rede Neuro-Fuzzy de Inferéncia Auto-Construtiva, proposta por Ju-
ang e Lin, ajusta automaticamente sua estrutura de regras [Chia-Feng
e Chin-Teng 1998].

1999

NEFCON

Proposto por Nauck e Kruse, combina redes neurais com controla-
dores fuzzy para aplicagbes de controle adaptativo [Nauck e Kruse
1999].

1999

EFUNN

Desenvolvido por Kasabov, é um sistema neuro-fuzzy evolutivo que
ajusta sua estrutura e parametros dinamicamente [Kasabov e S. Qun
1999].

1999

NFN

Proposto por Figueiredo e Gomide, foca na otimizacao de regras fuzzy

para sistemas adaptativos [Figueiredo e Gomide 1999].

1999

HYFIS

(Hybrid Fuzzy Inference System), desenvolvido por Kim, utilizado

em modelagem de séries temporais [Kim e Kasabov 1999].

2002

DENFIS

(Dynamic Evolving Neural-Fuzzy Inference System), desenvolvido
por Kasabov, ideal para modelagem em tempo real [Kasabov, Song
e Qun 2002].

2004

SOFNN

(Self-Organizing Fuzzy Neural Network), modelo que ajusta automa-
ticamente sua estrutura e pardmetros durante o aprendizado [Leng,
Prasad e McGinnity 2004].

2012

mANFIS

Versdo modificada do ANFIS, usada para analise de emogdes huma-
nas complexas utilizando sinais visuais e EEG [Qing, Sungmoon e
Minho 2012].

2019

SOFIS

(Local optimality of self-organising neuro-fuzzy inference systems),
otimiza localmente a estrutura para desempenho aprimorado [Gu,
Angelov e Rong 2019)].

2021

ML-TSK FS

Modelo multi-rétulo que combina redes neurais e légica fuzzy para

classificagdo com foco na correlagdo de rétulos [Lou et al. 2021].

Tabela 2.8: Alguns Modelos Neuro-Fuzzy (1990-2022)
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Motivagao para o Uso de Sistemas Neuro-Fuzzy

A principal motivacdo para o uso de sistemas neuro-fuzzy estd em sua capacidade de
unir o raciocinio aproximado dos sistemas fuzzy com o aprendizado adaptativo das

redes neurais, criando uma solugdo robusta para problemas complexos e dindmicos.

e Aprendizado e Adaptacao das Redes Neurais: As redes neurais fornecem
ao sistema neuro-fuzzy a capacidade de aprender e adaptar-se continuamente a
novos dados, essencial para contextos onde as informacoes estdo em constante

mudanca.

e Interpretabilidade dos Sistemas Fuzzy: A légica fuzzy utiliza regras lin-
guisticas simples (do tipo se-entdo), facilitando a transparéncia e a compre-
ensdao do modelo. Em &reas criticas como a medicina e financas, essa interpre-
tabilidade é essencial para que especialistas entendam e validem as decisées do

sistema.

e Tratamento de Ambiguidade, Imprecisao e Incerteza nos Dados: Os
sistemas fuzzy sao projetados para lidar com dados vagos e ambiguos, per-
mitindo que informagoes incertas sejam classificadas de maneira flexivel. Isso
torna os sistemas neuro-fuzzy ideais para problemas de classificagdo em cené-
rios complexos, onde a variabilidade e a falta de precisao dos dados desafiam

métodos tradicionais.

A Tabela 2.8 de evolugao dos sistemas neuro-fuzzy, de 1991 a 2022, destaca o
desenvolvimento continuo desses modelos e a diversificacao de suas aplicagoes. Essa
trajetdria reforca a relevancia dos sistemas neuro-fuzzy para enfrentar desafios reais
que demandam aprendizado adaptativo, transparéncia e manejo eficaz de incertezas.

Os sistemas neuro-fuzzy oferecem uma abordagem apropriada para problemas
onde a incerteza e a necessidade de aprendizado se encontram. Ao combinar a
interpretabilidade dos sistemas fuzzy com a capacidade adaptativa das redes neurais,
esses sistemas fornecem uma solucao flexivel para uma ampla gama de aplicacoes,

desde controle de processos industriais até reconhecimento de padroes.

2.3 A INTEGRAL DE CHOQUET DISCRETA

Para compreender plenamente a Integral de Choquet Discreta, é importante primeiro
abordar a fundamentagdo teérica das fungoes de agregacdo e das medidas fuzzy.
Também serdo apresentados exemplos que facilitam a compreensio desses conceitos.

Cada um desses elementos serd explorado nas préximas subsecoes.



42 Capitulo 2. PRELIMINARES

2.3.1 Fundamentos dos Operadores de Agregacao

A agregacéao é o processo de combinar diferentes valores numéricos em um tnico valor
representativo, conhecido como fungao de agregacao [Grabisch, Marichal et al. 2009].
Em sistemas fuzzy, funcoes de agregacio sao amplamente aplicadas para combinar
graus de pertinéncia, pesos de critérios, graus de preferéncia, entre outros. As
fungbes de agregacdo tém uma importancia fundamental em areas como estatistica,
ciéncia da computacdo, matematica e economia, permitindo sintetizar informacoes

para andlises e tomadas de decisao.

Definicao 4. (Fungio de Agregag¢io) Uma fungao de n > 1 argumentos que mapeia
o hipercubo unitdrio no intervalo [0,1], A :[0,1]" — [0,1], é chamada de fun¢ao de

agregacdo quando satisfaz:
o Condigoes de Fronteira: A(0,0,...,0) =0 ¢ A(1,1,...,1) =1.

o Monotonicidade: Se & < § entio A(Z) < A(Y), para z; < y; em todo i €

{1,...,n}.

[0,1] < R®

[0,1]c R

Figura 2.20: Representagao geométrica de uma fungdo de agregacao

Exemplo 4. Imagine um sistema de recomendacdo de filmes, onde um usudrio
avalia diferentes aspectos (enredo, diregio, atuagio) em uma escala de 0 a 1. As
funcées de agregacdo combinam essas notas para determinar uma avaliacdo final do
filme.

Classes de Operadores de Agregacao

Os operadores de agregacao podem ser classificados em quatro categorias principais:
média, conjuntiva, disjuntiva e mista [Grabisch, Marichal et al. 2009]. Além disso,
dependendo de suas propriedades especificas, essas fungoes sdo divididas em classes
adicionais, incluindo T-normas, T-conormas, fungoes de sobreposigdo (overlaps) e
fungdes de agrupamento (groupings) [Bustince, Fernandez et al. 2010; Bustince,
Pagola et al. 2011].
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« T-Normas: Uma funcio de agregacio bivariada T : [0,1]2 — [0, 1] é dita ser
uma t-norma se satisfizer as seguintes propriedades:
— (T1) Comutatividade;
— (T2) Associatividade;
— (T3) Condigao de fronteira: Va € [0,1] : T(x,1) = x.

As t-normas sdo amplamente utilizadas em operacgoes de conjuncéo em légica

fuzzy.

« T-Conormas: Uma fungdo de agregacio bivariada S : [0,1]* — [0,1] é uma
t-conorma se satisfizer as seguintes propriedades:
— (S1) Comutatividade;
— (S2) Associatividade;
— (S3) Condigao de fronteira: Vz € [0,1] : S(x,0) = =.

As t-conormas sao utilizadas em operagoes de disjuncéo e sdo o operador dual

das t-normas.

« Fungdes de Sobreposicdo (Overlap): Uma funcio bivariada O : [0,1]* —

[0, 1] é dita ser uma fungao de sobreposicao se satisfizer as seguintes condigdes:

— (01) O é comutativa;

— (02) O(z,y) = 0 se, e somente se, zy = 0;
— (03) O(x,y) =1 se, e somente se, xy = 1;
— (04) O é crescente;

— (05) O é continua.

Funcoes de sobreposicao sao tteis em casos onde se deseja medir o grau de

sobreposicao ou similaridade entre dois valores.

« Fungdes de Agrupamento (Grouping): Uma funcio bivariada G : [0, 1]* —

[0, 1] é dita ser uma fun¢do de agrupamento se satisfizer as seguintes condigdes:
- (G1)
- (G2)
- (G3)
- (G4)
- (G5)

G é simétrica;
G(z,y) = 0 se, e somente se, x = y = 0;
G(x,y) = 1 se, e somente se, x = 1 ou y = 1;
G4) G
G5

é crescente;

G é continua.
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As fungoes de agrupamento sao aplicadas em contextos onde se deseja combinar

valores que representam diferentes agrupamentos ou categorias.

Na Tabela 2.9, apresentamos alguns exemplos.

Férmula Notacao Classe Tipo
min{zy,...,z,} min Conjuntiva t-norma, overlap
max{xy,...,Tn} max Disjuntiva  t-conorma, grouping
| PR Conjuntiva t-norma, overlap

Ly AM Média nao tem tipo

(% o ZL'ZQ) 2 QM Média nao tem tipo

(T, )Y GM Média nao tem tipo

(711 Yo w%) - HM Média nao tem tipo

Tabela 2.9: Exemplos de Fungdes de Agregacio
Onde x; # 0 em HM.

Medidas Fuzzy

Antes de abordarmos a Integral de Choquet, é necessario entender o conceito de
medidas fuzzy, que desempenham um papel essencial no calculo da integral e na
modelagem de interacbes complexas entre atributos. As medidas fuzzy permitem a
agregacao de valores, considerando incertezas e interdependéncias entre atributos, o
que é fundamental para aplicagoes em sistemas onde a relacio entre os dados néo é
estritamente aditiva.

As medidas fuzzy generalizam os conceitos habituais de medida, como compri-
mento, area e volume [Barros e Bassanezi 2010]. Ao contrario das medidas classicas,
que sao o-aditivas, as medidas fuzzy enfraquecem essa propriedade, preservando
apenas a monotonicidade. Isso permite maior flexibilidade na modelagem de inter-
dependéncias complexas, uma caracteristica essencial para sistemas de classificagao
multi-rétulo, como o que abordamos em nossa pesquisa.

Para entender melhor a relevincia das medidas fuzzy, é 1til apresentar a defi-
nicao formal de um espaco mensuravel e de uma medida, antes de passarmos para
o conceito especifico de medida fuzzy e sua aplicacdo na agregagdo de atributos

interdependentes.

Definigao 5. (Espaco Mensurdvel e Medida) [Pedrycz e Gomide 1998] Um espago
mensurdvel é descrito pelo par (2, A), onde Q € o universo e A é uma o-dlgebra de
subconjuntos de Q. Uma medida m é uma funcio definida em (2, A), com valores

ndo negativos, que satisfaz:
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1. m(@) =0.

2. m ¢é o-aditiva, ou seja, para uma familia de conjuntos disjuntos {A;}:
(o] o0
m <U A¢> = Zm(Ai).
i=1 i=1

No entanto, em sistemas onde os elementos interagem, como na avaliagao de
produtividade de grupos de trabalho, essa abordagem pode ser restritiva. Considere,
por exemplo, a produtividade de um grupo de trabalhadores: a combinacdo de duas
subequipes pode nao resultar em uma produtividade que seja simplesmente a soma
das partes, devido a interdependéncia entre os trabalhadores.

Medidas Fuzzy e a Auséncia de Aditividade: As medidas fuzzy relaxam a
condicao de o-aditividade, exigindo apenas monotonicidade. Dessa forma, se A C B,
entdo m(A) < m(B), mas m(AUB) # m(A)+m(B) necessariamente, mesmo que A e
B sejam disjuntos. Isso permite que as medidas fuzzy capturem dependéncias mais
complexas entre elementos. Essa flexibilidade torna as medidas fuzzy adequadas
para representar interdependéncias e incertezas em sistemas como o modelo ML-
TSKC FS, abordado em nosso estudo.

Definicao 6. (Medida Fuzzy)[Sugeno 1974] Seja N = {1,...,n} um conjunto
finito e 2V o conjunto das partes de N. Uma fungio m : 2N — [0,1] é uma medida

fuzzy se:
1. m(0) =0 em(N)=1.
2. Se X CY, entao m(X) <m(Y) para qualquer X, Y C N.

Interagées Modeladas pelas Medidas Fuzzy: As medidas fuzzy possibilitam

trés tipos de interacbes entre conjuntos disjuntos A e B:
o Independéncia: m(A U B) = m(A) + m(B).
o Interacao Positiva: m(AU B) > m(A) + m(B).
o Interacdo Negativa: m(AU B) < m(A) +m(B).

Essas interagdes permitem que as medidas fuzzy capturem dindmicas complexas
entre atributos, o que é particularmente 0til em sistemas de classificagdo multi-
rotulo, onde a interagdo entre os atributos pode influenciar diretamente a perfor-
mance do modelo.

A Figura 2.21 mostra a representacao grafica de uma estrutura de medida fuzzy
para um conjunto com quatro elementos. Cada né representa um subconjunto res-
peitando a ordem de inclusao.

Medidas Fuzzy Utilizadas no Estudo
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Figura 2.21: Estrutura de medidas fuzzy para um conjunto finito
N ={1,2,3,4}

Para o calculo da Integral de Choquet em nosso estudo, selecionamos cinco tipos
de medidas fuzzy, descritas na Tabela 2.10. Cada medida reflete uma abordagem

diferente para representar incerteza e importéncia relativa entre atributos.

Medida Definicao

Uniforme my() = %I‘

Relativa mg(I) = %L’]Z
iEN

Produto my(l) = Hje’]i
iEN

n

Poténcia ~ my([) = (M)q, g>0

Ponderada my (1) =Y ;crpi

Tabela 2.10: Medidas fuzzy utilizadas no estudo.

Descricao das Medidas Utilizadas: Cada medida fuzzy possui caracteris-

ticas especificas que a tornam apropriada para contextos distintos:

e Medida Uniforme: Indica igual importancia para todos os atributos, sendo

atil em cendrios onde a homogeneidade é desejada.
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e Medida Relativa: Prioriza atributos com maior relevancia relativa, refletindo

situagoes onde alguns atributos tém impacto mais significativo.

e Medida Produto: Usa interdependéncia multiplicativa, adequada para ana-

lises de risco e situagoes de alta interagao entre atributos.

e Medida de Poténcia: Ajusta a sensibilidade por meio de ¢, destacando

subconjuntos especificos conforme o contexto.

e Medida Ponderada: Permite especificar pesos diretos para cada atributo,

oferecendo controle total sobre a influéncia individual.

Assim, as medidas fuzzy sdo essenciais para modelar incertezas e interdepen-
déncias complexas em sistemas onde a relagdo entre os atributos é crucial. Essa
caracteristica justifica a escolha da Integral de Choquet como técnica de agregacao
em nosso modelo, pois ela permite capturar essas interacoes de forma mais eficaz.
Na préoxima segao, discutiremos a Integral de Choquet e sua aplicacio especifica no
modelo ML-TSKC FS, mostrando como ela contribui para melhorar a classificagao

multi-rétulo.

Integral de Choquet Discreta: Definicdo e propriedades.

A integral de Choquet foi introduzida por Gustave Choquet no contexto da teoria das
medidas fuzzy, visando criar uma forma de integracao que pudesse lidar com medidas
nao aditivas e, portanto, capturar interdependéncias entre varidveis [Choquet 1954].
Posteriormente, essa integral foi adaptada e explorada na teoria fuzzy, notavelmente
pelos trabalhos de Murofushi e Sugeno, que utilizaram a integral de Choquet para
modelar medidas fuzzy em contextos de decisdao multicritério, onde as interacoes
entre critérios sao cruciais [Murofushi e Sugeno 1989].

No contexto discreto, a integral de Choquet atua como um operador de agre-
gacao nao aditivo, permitindo que se capturem interacdes complexas entre as
varidveis, ou critérios, sem as limitagoes dos operadores de agregacao tradicionais,
como a média ponderada ou o produto. Em particular, a integral de Choquet dis-
creta é amplamente utilizada em sistemas de decisdo multicritério e aprendizado
de preferéncias, onde a importancia de cada critério depende dos outros critérios

considerados. Formalmente, a Integral de Choquet discreta é definida como:

Definicao 7. (Integral de Choquet discreta ) Sejam : 2N — [0, 1] wma medida fuzzy.
A integral de Choquet discreta de ¥ = (x1,x2,...,xy) € [0,1]" com relagio a medida

fuzzy m é uma fungio Cy : [0,1]™ — [0, 1], definida por

Cm(f) = zn: (33‘(1) - x(i_1)> -m (A(Q) R (2.1)

i=1
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onde T » = (ﬂ:‘(l),...,l‘(n)) € uma permutacdo ndo-decrescente de T, isto é, 0 <
r1y < ... < Xy, por convengdo x) = 0, e Agy = {(i),...,(n)} € o subconjunto

dos indices das n — i + 1 maiores componentes de Z.

Onde a medida m fornece o peso relativo de cada subconjunto de N, permitindo
que o operador de agregacdo considere a importancia das varidveis em conjunto,
refletindo a influéncia das interagoes entre elas [Grabisch e Labreuche 2010; Beliakov,
James e Wu 2020].

Comparagao com outros Operadores de Agregacao

A integral de Choquet discreta oferece uma flexibilidade muito maior do que opera-
dores de agregagao mais simples, como o minimo e o produto, principalmente quando
precisamos lidar com situagoes de alta dependéncia entre as varidveis de entrada.
Cada um desses operadores tradicionais possui limitacoes especificas que reduzem
sua capacidade de capturar interagoes complexas entre varidveis.

O operador minimo, denotado por min(z1, z2,...,y), ¢ um operador conserva-
dor que considera apenas o menor valor entre as variaveis de entrada x1, xs, ..., Ty.
Isso significa que, mesmo que outras variaveis tenham valores mais altos, o minimo
s6 considera o valor mais baixo, o que o torna pouco adequado para situacoes onde
a interacdo entre varidveis é importante.

O operador produto, por sua vez, combina as variaveis multiplicando seus valores:

H(ml,xQ,...,xn):xl X Tg X +++ X T

Embora esse operador leve em conta todas as varidveis, ele ndo consegue capturar
interagoes especificas entre subconjuntos de varidveis. Ele pressupoe uma certa
independéncia entre as varidveis, o que limita sua capacidade de modelar interacoes
complexas entre critérios distintos [Beliakov, James e Wu 2020; Grabisch 2000].

Em contraste, a integral de Choquet se destaca porque permite:

e Monotonicidade: A integral de Choquet é nao-decrescente, ou seja, se
o valor de uma varidvel z; aumenta, mantendo as outras constantes, o valor
da integral de Choquet ndo diminui. Isso garante que o operador respeite
aumentos nas varidaveis individuais, capturando assim a natureza nao-aditiva
das interagoes. Em termos formais, para duas varidveis x; e ; em um conjunto

X ={x1,29,...,2,}, temos:

x> xj = Co(x1, ..., %, ..., Zn) > Cu(z1,..., 25, ..., Tp),

onde C, é a integral de Choquet discreta em relagdo & medida fuzzy m.
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o Sensibilidade as Interacgdes: A integral de Choquet consegue capturar a
forma como as varidveis interagem entre si, gracas a medida fuzzy m. Por
exemplo, se duas varidveis x; e x; tém uma influéncia maior quando consi-
deradas juntas do que individualmente, a medida fuzzy reflete essa sinergia,
atribuindo um peso maior ao subconjunto {i,;j} do que & soma dos pesos in-
dividuais m({i}) e m({j}):

m({7,j}) > m({i}) + m({7})-

Se, por outro lado, duas variaveis sdo redundantes, a medida fuzzy pode refletir

isso, atribuindo um peso menor ao subconjunto {i, j}:

m({i,7}) <m({i}) + m({5})-

Essa sensibilidade permite a integral de Choquet lidar com dependéncias com-
plexas, o que é especialmente 1til em sistemas de decisao e avaliagdo multicri-
tério [Krishnan, Kasim e Bakar 2015; Grabisch, Roubens et al. 2000].

o Flexibilidade: A integral de Choquet se adapta ao contexto, ajustando o
peso de cada variavel conforme o grupo especifico em que ela esta inserida. Isso
significa que, diferente de uma média ponderada comum, onde cada varidvel
tem um peso fixo, na integral de Choquet o peso de uma varidavel x; pode
mudar dependendo dos outros critérios presentes. Essa flexibilidade é ideal
em aplicacdes praticas, como recomendacao de produtos e sistemas de ranking,
isso ajuda a modelar as interacdes entre critérios de maneira precisa, refletindo
relagoes de dependéncia que os operadores minimo e produto ndo conseguem

capturar [Tehrani, Cheng e Hullermeier 2012].

Essas caracteristicas fazem da integral de Choquet uma excelente escolha para
problemas que requerem uma visao detalhada das interagoes e dependéncias en-
tre critérios. Em contextos como decisao multicritério e agregacao de informagoes
complexas, a integral de Choquet permite que o peso de cada critério seja ajus-
tado conforme a presenca de outros critérios, criando uma agregacao adaptada ao
contexto que reflete melhor as interagoes entre varidveis [Benvenuti, Vivona et al.
2002].

Exemplos Comparativos: Integral de Choquet vs. Operadores Minimo e
Produto

Vamos apresentar exemplos para cada uma das propriedades destacadas: Mono-

tonicidade, Sensibilidade as Interagoes e Flexibilidade. Compararemos a
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Integral de Choquet com o operador minimo e o operador produto para de-
monstrar como, em determinadas situagoes, a integral de Choquet captura nuances

que os operadores mais simples ndo conseguem.

e Monotonicidade: Queremos ver como cada operador reage a um aumento

em uma das varidveis, mantendo a outra constante.

— Exemplo: Suponha que temos duas variaveis representando critérios de

avaliagdo: 1 = 0.7 e 2 = 0.5.

— Objetivo: O operador deve aumentar seu valor final se x; aumentar,

refletindo a importancia crescente desse critério.

— Medida fuzzy: para a integral de Choquet: m(A4;) = 0.6, m(Az) = 0.4,
e m(ALQ) =0.9.

Operadores:

— Operador Minimo:
min(z,z2) = min(0.7,0.5) = 0.5
Se aumentarmos x1 para 0.9:
min(0.9,0.5) = 0.5

Observagdo: O operador minimo nao reflete o aumento em z1, ele depende

apenas do menor valor.

— Operador Produto:
1 X 2 = 0.7 x 0.5 =0.35
Se aumentarmos x1 para 0.9:
0.9 x 0.5 =0.45

Observagdo: O produto reflete o aumento, mas penaliza o valor final, pois

multiplicar por 0.5 ainda reduz significativamente o resultado.

— Integral de Choquet:
Cm (21, 22) = (2(1) — T(0)) - m(A12) + (2(2) — (1)) - m(A2)
Com l‘(l) = 0.5, .7}(2) =0.7:

Cp(1,22) = (05— 0) - 0.9+ (0.7 — 0.5) - 0.4 =0.5-0.9+ 0.2- 0.4 = 0.53
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Se aumentarmos x1 para 0.9:

Cp(z1,22) = (0.5—-0)-0.9+(09—-0.5)-04=0.5-0.94+0.4-0.4 = 0.66
Observagao: A integral de Choquet aumenta mais significativamente, cap-
turando o impacto positivo do aumento de x;.

e Sensibilidade as Interagbes: Vamos considerar um caso onde as variaveis
representam dois critérios que, quando atuam juntos, tém uma influéncia maior

do que quando isolados (sinergia).

— Exemplo: Suponha que temos dois critérios de avaliacdo: z; = 0.4 e
To = 0.8.
— Objetivo: O operador deve refletir que esses critérios sdo mais valiosos

juntos do que separadamente.

— Medida fuzzy: m(A;) = 0.4, m(Az) = 0.5, e m(A;2) = 0.9.
Operadores:
— Operador Minimo:
min(z,z2) = min(0.4,0.8) = 0.4

Observagio: O operador minimo ignora a interagdo entre x1 e z2 e usa

apenas o menor valor.

— Operador Produto:
71 X 9 = 0.4 x 0.8 = 0.32

Observagdo: O produto combina ambos os valores, mas sem capturar a

sinergia entre eles.

— Integral de Choquet:
Cin(r1,72) = (2(1) — 2(0)) - M(A12) + (T(2) — 7(1)) - m(A2)
Com z(1) = 0.4, z(5) = 0.8:
C(z1,22) =(04—-0)-09+(0.8—-0.4)-05=04-0.940.4-0.5 =0.56

Observagdo: A integral de Choquet captura a sinergia entre x1 e xo,

resultando em um valor agregado maior.

e Flexibilidade: Vamos considerar um caso onde o peso de um critério deve

depender da presenca de outro critério.
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— Exemplo: Suponha que temos dois critérios de avaliagdo: z; = 0.6 e
Tro = 0.8.

— Objetivo: O operador deve dar mais peso a 1 quando xo estd presente,

refletindo uma dependéncia contextual entre os critérios.

— Medida fuzzy: m(A;) = 0.4, m(Az) = 0.5, e m(A;2) = 0.85.
Operadores:

— Operador Minimo:
min(z, z2) = min(0.6,0.8) = 0.6

Observagdo: O operador minimo ignora a influéncia adicional de z2 sobre
xIq.

— Operador Produto:
T1 X Ty = 0.6 x 0.8 =0.48

Observagdo: O produto considera ambos os valores, mas sem ajustar o

peso de x1 baseado na presenca de x».

— Integral de Choquet:
Cin(T1,72) = (2(1) — 2(0)) - M(A12) + (T(2) — 7(1)) - m(A2)

Crm(z1,22) = (1) - (M(A1,2) — M(A2)) + 2(9) - M(A2)

Observagdao: Notemos que, o peso de uma variavel z(;) pode mudar de-
pendendo dos outros critérios presentes, oferecendo uma agregacao mais

sensivel ao contexto.

Para (1) = 0.6, z(2) = 0.8 temos:
Cm(z1,22) = (0.6 —0)-0.85+ (0.8 —0.6)-0.5 =0.6-0.85+0.2-0.5 = 0.61

Esses exemplos mostram que a Integral de Choquet pode capturar nuances
de interacdo e dependéncia entre variaveis de forma que os operadores de minimo
e produto nao conseguem, tornando-a mais flexivel e sensivel ao contexto em situ-
acoes de decisdo multicritério e agregacao de informagodes complexas.

A seguir, apresentamos alguns exemplos didaticos da Integral de Choquet.

Exemplo 5. Média Aritmética como Caso Particular da Integral de Cho-

quet
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A média aritmética é um caso particular da Integral de Choquet quando usamos
uma medida fuzzy uniforme, isto €, uma medida que atribui a mesma importancia

a todos os subconjuntos. Para ilustrar, consideremos trés varidveis x1 = 1, xo = 3,

1

€ T3 =D COM PESOs iguais wy = wg = w3 = 3.

Calculando a média aritmética:

= () (53) ¢ (19) =

Usando a Integral de Choquet com wma medida uniforme, obtemos o mesmo

valor:

m({a1}) = m({az}) = m({as}) = 5.
m({o1,22}) = ({1, a5}) = m({az,5}) = 5,
m({a:l, X9, 333}) =1.
Calculando a Integral de Choquet:
Cun(z) = (2(1) — O)m({z1, T2, 73}) + (7(2) — (1)) m({72, 23}) + (2(3) — T(2))M({23}).
Substituindo os valores:

cm(;c):u—())><1+(3—1)><§+(5—3)x _3

W =

Assim, a Integral de Choquet recupera a média aritmética com uma medida uniforme.

Exemplo 6. Modelagem Pratica com a Integral de Choquet
Consideremos um cendrio onde trés trabalhadores, Leo, Kim e Eva, tém dife-
rentes niveis de produtividade. Nosso objetivo € calcular a producdo total do grupo
usando a Integral de Choquet, que permite modelar a interaciao entre os diferentes
trabalhadores (ou subconjuntos deles), capturando assim dependéncias e sinergias.
Os valores m sdo determinados com base no subconjunto dos trabalhadores que

estdao contribuindo para a producao total, como mostrado na Figura 2.22.
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N={,..,n} Lm(WV)=1 @i
Ac N m: 2N —> [0,1] 2.m(9)=0
{ um conjunto } um nimero positivo 3.1’1’1(147.)S m(UA) a S&a

Lot K2 B
rodutividade = prod = m & & &
P p | ﬁ g: A
N={,23} 2°=8 [ & |

produtividade {L,K,E} =1

prod {L,K}\____ prod{L,E}=038 prod {K,E} =08

& | W \
prod {L}-03) prod {K}07) prod {E}—0.1

Figura 2.22: Exemplo de célculo de produtividade com medida fuzzy

<

Dado o conjunto N = {Leo, Kim, Eva} = {1,2,3}, calculamos a produgio total
em um dia de trabalho com base nos subconjuntos formados pelos trabalhadores. O
tempo de trabalho de cada trabalhador é representada na Figura 2.28 pelos valores

xi, com x1 = 0.4, 9 = 0.3 e x3 = 0.6.

Tempo

Leo —>1 Kim-—?2 Eva—3

Figura 2.23: Exemplo de cdlculo de produgao com a Integral de Cho-
quet

Dos dados de entrada temos:

J;(l) = 03, 13(2) = 04, JJ(3) =0.6

Os subconjuntos A associados sao:

Aqy ={(1),(2),3)} ={1,2,3}, A ={(2),3)} ={1,3}, A ={3}

A medida fuzzy m atribuida a cada um desses subconjuntos é:
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m({3}) =01, m({1,3}) =08, m({1,2,3}) =10

Agora, aplicamos a formula da Integral de Choquet:

Con() = (z1y — 0)m(A)) + (2(2) — z))m(A2)) + (2(3) — T(2))m(A(3))

Substituindo os valores:

Cpo(z) = (0.3—=0)-0.1+ (0.4 —0.3) - 0.8+ (0.6 — 0.4) - 1.0

Realizando os calculos:

Cp(2) =0.3-1.0+0.1-0.840.2-0.1

Cpu(2) = 0.3+ 0.08 +0.02 = 0.4

Portanto, a producio total avaliada usando a Integral de Choquet é 0.4, o que

reflete a interacao entre os trabalhadores e suas contribuicoes individuais.

Conclusao

A integral de Choquet discreta como operador de agregacdo é uma ferramenta po-
derosa para capturar relagoes de dependéncia e interagao entre variaveis, oferecendo
uma alternativa flexivel e robusta aos operadores tradicionais. Sua aplicabilidade
em contextos de alta complexidade a torna essencial para areas que requerem uma

analise detalhada das interacdes entre varidveis.






Capitulo 3

SISTEMA FUZZY
MULTI-ROTULO

TAKAGI-SUGENO-KANG
CHOQUET (ML TSKC-FS)

Neste capitulo, apresentamos o funcionamento do modelo ML-TSKC FS também
explicaremos como cada componente do modelo contribui para o processo de infe-
réncia fuzzy e como a integral de Choquet é utilizada para capturar as interagoes
complexas entre as variaveis. Além disso, descreveremos o fluxo de dados através das
diferentes camadas do modelo, desde a fuzzificacdo das entradas até a ponderagao

dos resultados finais.

3.1 ARQUITETURA DO MODELO ML-TKSC FS

A arquitetura ML-TKSC FS mantém os principios fundamentais dos sistemas de in-
feréncia fuzzy TSK (Takagi-Sugeno-Kang) (por exemplo, [Tomohiro e Sugeno 1985;
Sugeno e Kang 1986; Sugeno e Kang 1988]), mas aprimora as capacidades de mo-
delagem. A estrutura proposta incorpora a integral discreta de Choquet para a
determinagdo do peso das regras, substituindo o operador de produto utilizado na

arquitetura original ML-TKS FS (Sistema Fuzzy Multi-Ré6tulo Takagi-Sugeno-Kang)

o7



Capitulo 3. SISTEMA FUZZY MULTI-ROTULO TAKAGI-SUGENO-KANG
CHOQUET (ML TSKC-FS)

introduzida em [Lou et al. 2021]. Esta generalizagdo permite que o modelo consi-
dere de forma mais precisa as interagoes entre os atributos. Além disso, melhora a
capacidade do modelo de captar interagoes complexas dos dados, resultando em um
desempenho superior em sistemas multi-rétulo, como explicamos a seguir.

O ML-TKSC FS ¢ construido a partir de K regras fuzzy, cada uma estabelecendo
uma relacdo entre um conjunto de condigoes de entrada e uma correspondente fungao

linear de saida. A k-ésima regra é representada como:
RF:SE z é B*, ENTAO y = L¥(z,p*), k=1,2,...K. (3.1)

Aqui, € = (z1,...,24) representa o vetor de entrada, BF = Bf X ... X BZZ Sa0
os conjuntos fuzzy, e L¥(x, p¥) define a funcdo linear de saida, com pardmetros p”
ponderando linearmente as contribuigoes de cada varidvel de entrada x;.

Na Figura 3.1, o modelo ML-TSKC FS é ilustrado, compreendendo cinco cama-
das distintas. A primeira camada lida com a fuzzificagdo, enquanto as camadas 2, 3
e 4 formam o ntcleo com as regras base, abrangendo tanto os componentes antece-
dentes quanto consequentes. A quinta e iltima camada realiza uma agregacao das

saidas de cada regra.

Fuzzificacao Motor de Inferéncia Defuzzificagio
Entrada Se z Saida
—>
£ Entdo
Antecedentes Saida
Entrada Pertinéncia agregacio Normalizagao ;i Consequente agregacio

Vetor de
Saida

orae} (5] E]— L S TR
" <- X@-\@ =)
@H_/ q’L, l

Algoritmo de
aprendizagem
Camada 1 Camada 2 Camada 3 Camada 4 Camada 5 J

Integral de Choquet

Figura 3.1: Uma visdo geral do modelo ML TSKC-FS, destacando a
camada modificada.

A seguir, explicamos e discutimos cada camada representada na Figura 3.1.

3.1.1 Camada 1: O processo de fuzzificacao

O primeiro passo no processo de inferéncia fuzzy concentra-se na fuzzificacdo dos

dados de entrada, onde as informagoes quantitativas sdo convertidas em formas
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qualitativas. Essa conversao é essencial, pois permite que o sistema fuzzy lide com
a incerteza e a imprecisao dos dados do mundo real, algo que nao seria possivel
com valores exatos. No modelo ML TSKC-FS, essa conversao é realizada usando
conjuntos fuzzy BJ’?.

Na estrutura do modelo ML-TSKC FS, cada Bf esta associado a regras espe-
cificas e suas respectivas funcoes de pertinéncia pizr. Essas funcoes de pertinéncia

J

desempenham um papel crucial ao medir o grau de relevancia de um valor de entrada
xj dentro de um conjunto fuzzy Bf , determinando o quanto a entrada ativa a regra
RE. Para os subconjuntos fuzzy B;? de um universo U, suas funcdes de pertinéncia

sao definidas, para todos x; € U, por:

2
(1)
Y (3.2)
2(o%)
onde v;? e 6}“ sdo, respectivamente, o centro e o desvio padrao da funcao Gaussi-

ana. Esses pardmetros sao calculados via o algoritmo Fuzzy C-Means (FCM) [Bezdek

1981], que ajusta a posi¢ao do centro vf e a dispersao (5;g de acordo com os dados de

0% (xj) =exp | —

entrada.

v

0%

Figura 3.2: Gréfico da fun¢do Gaussiana, onde v é o centro e § é
o desvio padrao. O valor de pertinéncia p decresce conforme = se
afasta de v.

A funcgdo Gaussiana ilustrada na Figura 3.2 representa o comportamento de per-
tinéncia fuzzy: o ponto v é o centro do conjunto fuzzy, onde o grau de pertinéncia
é maximo (p = 1). A medida que z se afasta de v, o valor de p diminui exponenci-
almente, refletindo que o valor z; estd menos associado ao conjunto fuzzy. O desvio
padrao 0 determina a dispersdo da curva, ou seja, quao rapidamente a pertinéncia

decresce.

Exemplo 7 (Célculo da Funcao de Pertinéncia). Considere os sequintes parametros

para um conjunto fuzzy:
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Para uma entrada x; =5, temos:

Nesse caso, x; = 5 tem grau de pertinéncia mdzimo. Agora, para uma entrada

xj =4, temos:

(4 —5)? 1
M 4) =ex ——— | = eXx —— | =0.
B;?() ep( 2% 12 exp 2 0.606

Aqui, xj = 4 estd mais distante do centro Uf =5, e, portanto, tem uma pertinéncia

menor, mas ainda significativa.

A
] Bll Blz

M (6 ol i

w,e (%) .

Figura 3.3: O processo de fuzzificacéo.

A Figura 3.3 mostra como uma entrada x; é processada no modelo ML-TSKC
FS. O valor x1 é fuzzificado pelas fun¢des de pertinéncia B! (r1) e 1B} (1), que
atribuem diferentes graus de pertinéncia ao valor, dependendo da proximidade de
r1 em relagio aos centros dos conjuntos fuzzy Bi e Bi. Esse processo converte
uma entrada precisa em uma representagao fuzzy, permitindo que o sistema fuzzy
manipule a incerteza associada & entrada.

Este processo é essencial para a operagdo do sistema fuzzy, pois permite que
os dados reais sejam utilizados em inferéncias légicas que capturam as nuances e

incertezas do comportamento dos dados.

3.1.2 Camada 2: Determinacao do peso da regra fuzzy pela sua
forca de ativacao

O peso da regra desempenha um papel importante no sistema de inferéncia fuzzy
TSK, sendo ativado quando todas as clausulas antecedentes de uma regra fuzzy sao
satisfeitas. A forca de ativacao é definida como a quantificacido da forca da premissa
de uma regra com base em um conjunto de valores de entrada, e é derivada das
forgas de pertinéncia dos valores de entrada correspondentes aos antecedentes da
regra.

A forca de ativacdo desempenha um papel crucial no sistema de inferéncia fuzzy,

pois ela quantifica o grau de satisfacdo dos antecedentes de uma regra fuzzy. Quanto
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maior a forca de ativagdo, maior sera a confianga de que a regra em questao deve ser
ativada, o que afeta diretamente o valor da saida do sistema. Dessa forma, a forca
de ativagdo determina a relevincia de cada regra fuzzy no cédlculo da resposta final
do sistema.

Em geral, a forca de ativacdo de uma regra fuzzy R, com base em uma entrada
, é definida por meio de uma funcao de agregacio A : [0,1]4 — [0, 1], que combina

os graus de pertinéncia dos antecedentes para obter a forca de ativacdo como:

pi(e) = A (g (1)t (24)) (3.3)

Nesse contexto, pigk () representa a forca de pertinéncia do valor de entrada x;
para o antecedente B]’? Jda regra R*, sendo que a funcio de agregacio A desempenha
um papel crucial ao integrar essas forcas para calcular a forca de ativacdo final.

A funcao de agregacao A é responsavel por combinar os graus de pertinéncia
presentes no antecedente de uma regra fuzzy, resultando em uma unica forca de
ativacdo. Existem varias maneiras de definir essa fungao de agregagdo, como minimo,
produto, soma, média, ou até métodos mais complexos como a Integral de Choquet.
A escolha da fun¢do de agregacdo pode impactar significativamente os resultados,

ja que cada método trata de forma diferente a combinacao das pertinéncias.

Antecedente

R*: IF ixis BEAx, is BiA..Ax is BS THEN : 1F = pl+ pix +..+ plx,

B! I B HB} ('xl)

Figura 3.4: O processo da ativacio das regras p% ().

A Figura 3.4 ilustra o processo de ativacdo de uma regra. No topo, temos
os antecedentes da regra fuzzy, que sdo processados pelas funcdes de pertinéncia
pgk(z;). Essas fungoes atribuem graus de pertinéncia a cada entrada z;, dependendo
dajsua proximidade com os centros dos conjuntos fuzzy Bj]-€ . Em seguida, os valores
resultantes dessas pertinéncias sdo agregados por uma funcao A, resultando na forca

de ativacao ,uﬁ(:];), que ¢é usada para determinar o impacto da regra fuzzy no sistema.
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Trabalhos relacionados sobre a determinacao das forgas de ativacao de

regras fuzzy

Na literatura (por exemplo, [Jang e Jyh-Shing 1993; Kim e Kasabov 1999; Kasabov,
Song e Qun 2002; Lou et al. 2021]), as fungoes de agregacao A mais comuns na sao
as t-normas Minimo e Produto (que também séo fungoes de sobreposigao [Bustince,
Mesiar et al. 2021]). O Minimo é usado quando a seméantica da regra é “e”, impli-
cando que todas as clausulas antecedentes devem ser verdadeiras para que a regra
seja ativada. O Produto é utilizado quando a semantica da regra é “e também”,
indicando que as clausulas antecedentes devem ser verdadeiras em conjunto, nao
individualmente.

Um dos trabalhos pioneiros que exploraram diferentes técnicas de agregagao nos
antecedentes, além das tradicionais, foi apresentado por [Uebele, Shigeo e Ming-
Shong 1995], que introduziu um tratamento detalhado dos operadores de inferéncia
fuzzy usados para calcular o grau de pertinéncia das regras fuzzy em sistemas de
classificacdo. FEsta abordagem é baseada em trés principais fung¢oes de agregagao,
a saber, a t-norma Minimo, a t-conorma Méximo e a Soma (de fato, a média arit-
mética), cada uma desempenhando um papel distinto no tratamento dos dados de
entrada.

Utilizando o Minimo, a forca de ativacdo de uma regra fuzzy R, com base em

uma entrada x, é dada por:

/J'Ircnin(m) = min (NBf (xl)v s HU’BI"f1 (xA)) ) (34)
selecionando o menor grau de pertinéncia entre todos os fornecidos pelas fungoes de
pertinéncia para uma regra especifica. Embora seja eficaz para garantir a pertinéncia
dentro dos limites da classe, essa abordagem pode desconsiderar informacgoes valiosas
sobre as relacoes dos dados de teste com outras regioes.

Agora, o Maximo identifica a regra fuzzy com o maior grau de pertinéncia para

um dado vetor de entrada x:

(@) = max (e (1), . s (24)) (3.5)
Essa abordagem também pode desconsiderar informacoes valiosas sobre as relagoes
dos dados de teste com outras fronteiras de regioes.

A Soma agrega os graus de pertinéncia, simulando a inferéncia de redes neurais
e avaliando as distancias médias dos dados de teste para os hiperplanos da regiao
fuzzy, obtendo a forca de ativacio de uma regra fuzzy R* com base em uma entrada

x por:

A
pa(@) = 53 ). (3.6)
j=1



3.1. ARQUITETURA DO MODELO ML-TKSC FS 63

Essa soma fornece um grau de pertinéncia composto que pode refletir de maneira
mais adequada a proximidade dos dados de teste a regiao de interesse.

Assim, essa abordagem de [Uebele, Shigeo e Ming-Shong 1995] ilustra a comple-
xidade da classificacdo, destacando a necessidade de operadores de inferéncia que
possam lidar adequadamente com incerteza e ambiguidade.

Na pesquisa realizada por [Bezdek, Keller et al. 1999] sobre sistemas fuzzy, é
oferecida uma andlise do processo de determinacao do peso das regras em bases
de regras fuzzy, com foco especial no lado esquerdo das regras, que abrange os
componentes antecedentes. Nesta pesquisa, o calculo da forca de ativacdo de uma

regra fuzzy R* com base no vetor de entrada x, é feito por

(@) =T (p(an), s (4) (3.7)

onde T: [0,1]4 — [0,1] é uma t-norma. Observe que tanto o Minimo quanto o
Produto sao t-normas. No entanto, outras t-normas diferentes podem ser usadas
nesta abordagem.

A abordagem de [Chung et al. 2006] para o célculo da forga de ativagao das regras
no Sistema de Inferéncia Fuzzy Adaptativo Takagi-Sugeno-Kang (ATSFIS) destaca
a flexibilidade dos sistemas fuzzy para modelar intera¢bes complexas entre varidaveis
de entrada. Ao utilizar uma funcdo de pertinéncia do tipo sigmoide juntamente
com o operador ou interativo, o sistema é capaz de capturar nuances nas relacoes
entre as variaveis, o que é especialmente 1til em aplicagoes onde as rela¢bes nao
sdo facilmente modeladas por operadores tradicionais de t-norma. Entéo, a forca de

ativacdo de uma regra fuzzy R* com base no vetor de entrada x é calculada como:

W) = e (1) * g (2) = . s (.4), (3.8)

onde 15k (x;) denota uma funcdo de pertinéncia do tipo sigmoide para a i-ésima va-
riavel de entrada na k-ésima regra, e *: [0,1]2 — [0, 1] é um operador fuzzy especifico

definido, para todos z,y € [0, 1], por:

Ty
(1-2)(1-y)+ay

THY = (3.9)

Este operador, chamado ou interativo, conforme comentado por [Chung et al.
2006], fornece uma maneira inovadora de calcular a interagao entre as fungoes de
pertinéncia das varidveis de entrada. Ao contrario dos operadores tradicionais de t-
norma, que geralmente assumem o minimo ou o produto das fung¢des de pertinéncia,
o operador ou interativo permite uma representacdo mais rica da interacdo entre
variaveis, levando em consideragio sua coexisténcia e o grau de interacao entre elas.

O estudo de [Han, Sun e Fan 2008] explora a estrutura e a funcionalidade de

uma rede neural fuzzy aprimorada com base no modelo Takagi-Sugeno (7-S). Ele
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enfatiza a metodologia para o calculo da forca de ativagdo e a importancia das regras
nos sistemas de inferéncia fuzzy. Primeiro, para cada regra RF, o parametro oy, é

calculado usando a t-norma do minimo ou do produto, como:

ap(z) = min(yB;f(:Ul),...,yBg(:EAD (3.10)
ar(@) = T[(ne; (o0, - g (wa)). (3.11)

A importancia da regra, denotada por wg > 1, atua como um peso atribuido
a cada regra RF, representando sua relevancia ou confianca dentro do sistema de
regras. Essa metodologia permite diferenciar a influéncia de cada regra no resultado
do sistema de inferéncia, refletindo a confianca ou prioridade de certas regras sobre
outras. KEssa diferenciacdo é crucial para ajustar o sistema de inferéncia a fim de
capturar nuances especificas do dominio da aplicagdo. Assim, no modelo de [Han,
Sun e Fan 2008], a forca de ativacio de uma regra fuzzy R com base no vetor de

entrada x é calculada como:

1 (x) = ap(x)w(x). (3.12)

Assim, os trabalhos citados acima nao apenas esclarecem a importancia de selecionar
operadores de inferéncia apropriados para sistemas de regras fuzzy, mas também
estabelecem uma base comparativa para a implementacao de métodos avancados de
agregacao, como nossa proposta: a integral discreta de Choquet. Esse avancgo abre
caminho para sistemas de inferéncia fuzzy mais precisos e adaptativos, capazes de

lidar com a complexidade e ambiguidade dos dados do mundo real de forma eficiente.

Nossa proposta de aplicagao da integral de Choquet no ML-TSKC FS

Sistemas de regras fuzzy sao ferramentas poderosas para modelar rela¢des complexas.
No entanto, os métodos tradicionais de agregacdo em regras fuzzy frequentemente
assumem independéncia entre os atributos antecedentes (a parte SE). Essa limitacao
pode prejudicar a capacidade do sistema de capturar cendrios do mundo real onde
os atributos podem interagir e influenciar uns aos outros.

Nosso trabalho aborda essa limitagdo ao introduzir a integral de Choquet para
o calculo da forca de ativagdo das regras fuzzy. Essa abordagem é inspirada pelos
avancos recentes nos consequentes de regras fuzzy utilizando a integral discreta de
Choquet (e algumas generalizagoes), conforme demonstrado em [Lucca, Sanz, G.
Dimuro et al. 2018; Lucca, G. P. Dimuro et al. 2019; Marco-Detchart et al. 2021;
Wieczynski, Fumanal-Idocin et al. 2022; Wieczynski, Lucca et al. 2023; Ferrero-
Jaurrieta et al. 2023; Kim e Lee-Chae 2023; Riaz et al. 2023; Hongjuan Wang, Liu
e Zhao 2023; Wang et al. 2024; Bozyigit et al. 2024; Zhang, Mesiar e Pap 2024],
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que exploraram sua aplicagdo em consequentes de regras fuzzy em varios contex-
tos (por exemplo, processamento de imagens, Long Short-Term Memory, tomada
de decisao multicritério e TOPSIS, classificacdo, interfaces cérebro-computador, re-
conhecimento de padroes, gestdao de projetos e andlise de riscos). Portanto, nosso
trabalho da um passo significativo ao aproveitar as capacidades da integral de Cho-
quet nos antecedentes das regras (parte SE).

A integral de Choquet é uma ferramenta matematica poderosa que vai além dos
operadores tradicionais de agregacao (como minimo, méximo ou soma) utilizados em
sistemas de inferéncia fuzzy. Enquanto esses operadores se concentram nos graus
de pertinéncia individuais das varidveis, a integral de Choquet, por ser definida em
termos de uma medida fuzzy, captura a relagdo entre os atributos, considerando a
importancia relativa de cada combinagao de varidveis [Lucca, Sanz, Dimuro et al.
2019; Wieczynski, Dimuro et al. 2020].

Entéo, a forca de ativacdo de uma regra fuzzy R* com base no vetor de entrada
x, utilizando a integral de Choquet €,,: [0,1]* — [0, 1] com respeito a uma medida

fuzzy m como a fungao de agregacao A da Eq.(3.3), é dada por:

e (2) = o (i (21), sy () (3.13)

onde ppr denota a forca de ativacao da regra k para cada atributo z; na regra k.

Nest:% estudo, exploramos varias medidas fuzzy integradas no modelo ML-TKSC
FS. Como mencionado anteriormente, essas medidas sao fundamentais para modelar
as interagoes entre os atributos, influenciando diretamente o processo de classifica-
¢a0. Considerando um conjunto N = 1,...,n e um subconjunto I C N, juntamente
com um vetor de pesos associado a medida ponderada, as medidas fuzzy selecionadas
sdo definidas na Tabela 2.10.

A selecao dessas medidas é motivada por sua aplicabilidade e versatilidade na
modelagem da influéncia dos atributos na classificagdo, conforme destacado por [H.
Bustince et al. 2016]. Cada medida oferece uma abordagem distinta para quanti-
ficar e integrar caracteristicas relevantes, enriquecendo o processo de agregacao e
aprimorando o desempenho do modelo ML-TKSC FS. Uma breve discussao de cada

medida é dada a seguir.

o Medida Uniforme (my): distribui igual importancia a todos os atributos, sendo
util na auséncia de conhecimento prévio sobre a relevancia dos atributos. Ela
favorece uma agregacdo equitativa, o que pode ser limitado em casos onde

alguns atributos s@o mais informativos.

o Medida Relativa (mp): valoriza os atributos com base em sua ordem, assu-
mindo que os atributos de maior indice sdo mais relevantes. Isso pode au-
mentar a precisao quando uma hierarquia de importancia entre os atributos é

conhecida.
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e Medida do Produto (myy): enfatiza a combinacdo de atributos de alta ordem,
potencialmente capturando interagoes complexas essenciais para a classifica-

¢ao.

o Medida de Poténcia (my): modula a influéncia do tamanho do conjunto de atri-
butos, permitindo ajustes na sensibilidade do modelo ao nimero de atributos

envolvidos.

o Média Ponderada (my,): oferece flexibilidade ao permitir pesos especificos para
cada atributo, refletindo conhecimento ou hipdteses sobre sua importancia

relativa.

Cada medida traz uma perspectiva Unica para interpretar e modelar a importancia
dos atributos em contextos de classificagdo multi-rétulo. A selegdo dessas medidas
¢é guiada tanto pelo conhecimento do dominio quanto pela experimentacao, visando
otimizar a combinag¢do de informagdes no ML-TKSC FS para alcancar um desem-

penho ideal.

3.1.3 Camada 3: Normalizacgao

Esse processo envolve dividir a forga de ativacao de cada regra pela soma das forcas
de ativacao de todas as regras ativadas para a entrada atual. Essa operacao resulta
na forma normalizada da forca de ativacio da regra R, com base no vetor de entrada

x, dada por:

ik () — Mém(w)
Feal®) = S @)y (319

Aqui, ﬂ’ém(a:) representa a proporcio da forca de ativacdo da regra RF em relacio &

forca de ativacao total das regras ativadas para a entrada x.

3.1.4 Camada 4: Contribuicdo da regra (consequente)

O consequente, também conhecido como a parte entdo de uma regra fuzzy, desem-
penha um papel crucial no modelo ML-TSKC FS ao determinar a contribuicido da
regra para a saida final para uma determinada entrada. A contribuicdo da k-ésima
regra RF, para o vetor de entrada & = (21,...,24) e o vetor de pardmetros da regra
p* = (pk,...,p%), no modelo ML-TSKC FS, é dada por:

Lk(w,pk):plg—i—plfxl—i—---—l—pljle, k=1,...,K (3.15)

onde:

« pk é o termo constante associado & k-ésima regra. Ele atua como um termo
de viés, influenciando a saida mesmo quando todas as variaveis de entrada sdo

Zero.
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. pé? denota os coeficientes lineares vinculados a j-ésima varidvel de entrada x;
dentro da k-ésima regra. Ele essencialmente determina o peso ou a influéncia

de cada variavel de entrada na saida da regra.

Essencialmente, a Eq.(3.15) representa uma combinacao linear das varidveis de
entrada, ponderada pelos seus coeficientes correspondentes, juntamente com um
termo constante. O valor resultante indica a saida a qual a k-ésima regra se aplica

para a entrada dada.

3.1.5 Camada 5: Ponderacao

Na ponderacdo, o modelo ML-TSKC FS combina as contribuigbes das regras fuzzy,
ponderadas pelas suas respectivas forcas de ativacado, para obter a saida final. Essa
etapa permite agregar a informacao proveniente de todas as regras de forma ponde-
rada, refletindo a relevancia de cada regra para a entrada dada.

A saida de uma instancia & no modelo ML-TSKC FS pode ser expressa como

uma combinacio ponderada das saidas parciais de todas as regras R*, dada por:
K
~ ~k k k
§=>_ e, (@)L (x,p"),

onde:

. [/ém (x): representa a forga de ativagdo normalizada da k-ésima regra fuzzy para
a entrada x. Esse valor atua como um peso, refletindo o grau de importancia

da regra RF para a situacio atual.

o LF(x,p*): representa a contribuicio linear da regra RF para a saida final, onde

pF é o vetor de parametros especificos dessa regra.

Assim, cada regra contribui para a saida ponderada de acordo com sua relevancia,

determinada por [L’ém ().



Capitulo 3. SISTEMA FUZZY MULTI-ROTULO TAKAGI-SUGENO-KANG
CHOQUET (ML TSKC-FS)

Consequente

RN IF :xis Bf Axyis By A..nxis BY THEN : I' = pf + pfx, + ..+ pix,

R': .THEN: L'=p,+px+..+p\x,
R*: . THEN:L?*=p;+plx+.+px,
R': . THEN: L’=p,+plx +..+p.x,
R': .THEN:L"*=pj+plx+..+pix, /Z
R: _THEN: L’=p +px+..+px, \

RY: . THEN: L*=pl+pix+.+p'x,

Figura 3.5: Ilustracdo da agregacdo das regras para obter a saida
final.

A Figura 3.5 ilustra o processo de agregacao das regras fuzzy. Cada linha re-
presenta uma regra R*, que é ativada de acordo com a forca de ativacio ﬂ’ém (x). A
contribuicio de cada regra é dada pela funcio LF(x,p*), e todas as contribuigoes
sao somadas (X) para formar a saida final . Esse processo reflete a soma ponderada
das saidas das regras, onde cada regra contribui de acordo com sua relevincia para

a entrada.

3.2 O METODO DE APRENDIZAGEM

O processo de aprendizagem do modelo ML-TSKC FS é estruturado em duas fa-
ses, cada uma projetada para otimizar as capacidades do modelo. Na primeira
fase, um algoritmo de agrupamento Fuzzy C-Means [Bezdek, Ehrlich e Full 1984] é
utilizado para estabelecer funcbes de pertinéncia que refletem com precisdo as ca-
racteristicas de distribuicdo dos dados de entrada. Esta etapa é fundamental para
garantir que as fungbes de pertinéncia estejam bem ajustadas a estrutura natural
dos dados.

Uma vez que as fungoes de pertinéncia sao mapeadas de forma eficaz, o modelo
passa para a segunda fase, que se concentra no aprendizado e refinamento dos
parametros do modelo por meio de otimizacado. Esta fase é guiada por uma funcgao
objetivo que integra trés componentes essenciais, cada um desempenhando um papel

vital no processo de aprendizagem do modelo:

e Termo de Perda por Regressdo: Este componente garante que o modelo cap-
ture com precisdo as nuances e padroes presentes nos dados de treinamento,

alinhando as previsdes do modelo de forma préxima aos resultados observados.
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e Termo de Regulariza¢do: Este termo penaliza modelos excessivamente com-
plexos para evitar o sobreajuste e manter a generalizacio do modelo. Ele
incentiva a simplicidade e reduz o risco de o modelo se tornar muito ajustado

aos dados de treinamento.

e Termo de Correlacdo: Incorporando a correlagdo entre os rétulos, este termo
extrai informagcdes adicionais que aprimoram a capacidade do modelo de fazer

previsdes mais informadas, especialmente em contextos de multiplos rétulos.

A otimizagao desta fungao objetivo é realizada utilizando o algoritmo de descida
de gradiente proximal. O algoritmo ajusta iterativamente os parametros do modelo,
refinando-os para minimizar a fungdo objetivo. Através deste processo iterativo, o
modelo aprende os melhores pardmetros possiveis, a0 mesmo tempo que alcanca um
equilibrio entre a precisdo do ajuste, a simplicidade do modelo e a exploracao das
correlagoes entre os rotulos. Isso resulta em um desempenho robusto e confidvel

tanto nos dados de treinamento quanto nos dados nao vistos.

3.2.1 Fase 1 - Encontrando as saidas desejadas usando Fuzzy C-

Means (FCM)

O algoritmo Fuzzy C-Means é uma extensdo do classico algoritmo de clustering,
projetado para lidar com a incerteza e a sobreposigdo entre grupos. Ao contrario de
métodos como K-Means, que forcam cada ponto de dado a pertencer exclusivamente
a um cluster, o FCM permite que cada ponto tenha um grau de pertinéncia associado
a multiplos clusters. Isso torna o FCM uma escolha ideal para sistemas fuzzy, onde
a incerteza é uma parte inerente do modelo.

Para iniciar a primeira fase, é essencial definir o conjunto de dados de treinamento
que servird como base para o processo de agrupamento. Seja Drg o conjunto de

dados de treinamento, definido da seguinte forma:

Drr ={(z1,91),---,(®@N,Yn)} -

O conjunto de dados de treinamento Drp consiste em N pares de vetores de
entrada x;, que representam os pontos de dado no espaco de entrada, e suas saidas
associadas y;, que correspondem as classes ou rétulos desejados. O objetivo do FCM
é identificar os centros dos clusters com base nos pontos de entrada, ajustando-os

iterativamente representar adequadamente a distribuicdo dos dados.

Processo de Inicializacao e Iteracao

O processo comega com a inicializacdo aleatéria dos centros dos clusters para os
pontos de dados {x1,...,xN}, e refina iterativamente esses centros. A cada itera-

¢ao, o FCM calcula o grau de pertinéncia u;; para cada ponto de dado em relacao a
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cada cluster, utilizando esses graus para atualizar os centros dos clusters. A natu-
reza iterativa do FCM garante que os centros finais dos clusters v; e as respectivas
dispersoes o; reflitam com precisao a distribui¢ao dos dados.

Inicialmente, os centros dos clusters v; sao atribuidos aleatoriamente. A cada
iteracao, os centros dos clusters sdo atualizados com base no grau de pertinéncia w;;,
que reflete a proximidade de cada ponto x; a um centro v;. Apds varias iteragoes, os

clusters convergem para uma posi¢ao final que reflete melhor a estrutura dos dados.

.

N

v

Figura 3.6: Representagao grafica do Fuzzy C-Means (FCM).

A Figura 3.6 ilustra o processo de agrupamento fuzzy. No gréafico a esquerda,
as linhas concéntricas indicam os graus de pertinéncia de cada ponto de dado aos
centros dos clusters. Quanto mais proximo um ponto estd do centro, maior o grau
de pertinéncia. O grafico a direita mostra uma representacao tridimensional dos
clusters e suas funcoes de pertinéncia Gaussianas, com o; controlando a largura de

cada Gaussiana.

Caélculo do grau de pertinéncia (u;;), centros dos clusters (v;) e desvio

padrao( o)

Em cada iteragao, o grau de pertinéncia u;; de cada ponto de dado z; ao cluster j

é calculado da seguinte forma:
1
= 2
K (Ilwrij ) m—1
k=1 \Tlwi—v&ll

onde v; é o centro do cluster e m é o parametro de fuzzificacgo. O grau de

(I

pertinéncia de um ponto x; ao cluster j indica o quao proximo o ponto estd do
centro v;. Valores maiores de u;; indicam maior pertencimento ao cluster.

Os centros dos clusters obtidos pelo FCM sao calculados como:
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Os centros dos clusters v; sdo calculados como a média ponderada dos pontos
de dado x;, onde os pesos sao os graus de pertinéncia u;;. O desvio padrao o; para
cada cluster é determinado com base na distancia média dos pontos de dados ao

centro do cluster, ponderada pelos graus de pertinéncia, conforme a férmula:

N
2 im1 uf) - e — v ?
95 = N m
i=1 Ui

Esse valor quantifica a dispersdo dos pontos em torno do centro do cluster e
define a largura das funcoes de pertinéncia Gaussianas. Quanto maior o, maior a
variabilidade nos dados, resultando em func¢des de pertinéncia mais amplas.

Esses resultados sdo fundamentais para definir as func¢ées de pertinéncia Gaus-
sianas que o modelo fuzzy utilizara para representar as relacoes entre os dados de
entrada de maneira fuzzy. Isso permite que o modelo aproveite as informacoes es-
truturais capturadas durante o agrupamento para um aprendizado mais preciso e
robusto. Os centros dos clusters v; e os desvios o; serdo usados na préxima etapa
para determinar as fungoes de pertinéncia fuzzy que serao aplicadas nas regras do
sistema.

Agora, prosseguimos para determinar as saidas desejadas utilizando as fung¢oes de
pertinéncia contidas nos pesos das regras normalizadas ﬂ'ém definidas em Eq.(3.14).
Essas funcbes sdo parametrizadas por vf e 5;-“ = ha}“, onde h desempenha um papel
crucial na escala do desvio padréo a;? obtido a partir do algoritmo FCM para cada
regra RF. O valor de h nao é fixo. Em vez disso, ele é tratado como um hiperpara-
metro que é ajustado por meio de um processo de busca em grade, junto com outros
hiperpardmetros importantes. Essa busca em grade permite a exploragdo sistema-
tica de diferentes valores de h, otimizando o desempenho do modelo ao identificar a
melhor combinacao de hiperparametros.

Para uma instancia arbitraria (z,y) do conjunto de treinamento Drgr, quando a
entrada x é inserida no modelo ML-TSKC-FS, a saida ¢ é determinada da seguinte

forma:

b= > gk (@) IF (=.9"),

onde ﬂ'ém (x) representa a forca de ativacdo da k-ésima regra fuzzy e L* (:L', p’“)
é a funcao linear associada a essa regra fuzzy. A saida ¢ é calculada como uma
combinac¢ao ponderada das regras fuzzy, onde [L]ém (x) pondera a contribuicdo de

cada regra fuzzy. A funcio linear L* (zc, pk) é expressa como:
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Ik (m’pk) _ (plc)T < 1 > ’

onde p* é o vetor de coeficientes da funcio linear L* e  é o vetor de entrada de
dimensao A. Assim, a saida ¢ é uma soma ponderada das saidas lineares de cada
regra fuzzy. Para ilustrar, o vetor p* contém os coeficientes que definem a funcao
linear associada a cada regra fuzzy, determinando a contribuicdo da regra para a
saida final. Os componentes de x representam as variaveis de entrada do sistema.

Podemos reescrever a equacao da saida ¢ usando a funcio g*(z), que combina

a forga de ativagao fuzzy [L’ém (x) e a funcdo linear da regra fuzzy R¥, como:

K
g=> (p""g" ),

k=1

1
onde gF(z) = (ﬂ’ém (x) ( N )) A funcio g¥(x) encapsula a contribuicao de

cada regra fuzzy para a saida final, permitindo que a saida ¢ seja expressa como
uma soma ponderada das funcdes g*(x).
Seja g(z) = (g'(x),g%*(x),...,g%(z))T, entdo a saida § pode ser reescrita de

forma compacta como:

K
9= (p")"g" (=) =P'g(),
k=1

onde:

Portanto, encontramos que g = PTg(x), ou seja, para a entrada dada x, a saida
do modelo ML-TSKC-FS é uma funcao linear dos pardmetros P. Agora, para todas

as entradas x1,xo, ..., xy, as saidas correspondentes sdo calculadas como:

9;=Plg(x;), i=1,2,...,N.
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Figura 3.7: Representagdo matricial da saida do modelo ML-TSKC-
FS.

A Figura 3.7 ilustra o processo de cédlculo da saida de forma matricial. A matriz
de entrada X contém os vetores de entrada x1,xs,..., &y, € a matriz de saida Y
contém os vetores de saida correspondentes yy,ys, ..., yy. O modelo ML-TSKC-FS
aplica uma fungdo f parametrizada pelos vetores P e g(z), resultando nas saidas
previstas ¥, Ys, ..., Yn. Essa representacao visual destaca a relagdo entre as entra-

das e as saidas através do calculo matricial.

Saida do modelo Y

A

Combinamos todas as saidas individuais g, ¥s,..., ¥y €m uma Unica matriz Y,

onde:

A

Y =(91,92,---,9n) = P (g(z1) g(z2) ... g(zN))

ou simplesmente:

Yy = PTG,

onde G = (g(x1) g(x2) ... g(xN).
O objetivo do treinamento é minimizar a diferenca entre Y e a matriz de saidas
verdadeiras Y, ajustando os pardmetros P para garantir que as previsoes estejam o

mais préximo possivel dos valores reais.

3.2.2 Fase 2 - Encontrando os parametros das partes consequentes
para minimizar o erro da saida da rede

Com base na analise acima, consideramos a matriz de pardmetros consequentes P

como a variavel independente da fungao objetivo Of(P) para o ML-TSKC FS, que



Capitulo 3. SISTEMA FUZZY MULTI-ROTULO TAKAGI-SUGENO-KANG
CHOQUET (ML TSKC-FS)

tem a seguinte forma:

04(P) :%HPTG—YHTD-FIBHPHl—i—%Tr (RP'P), (3.16)

2
onde HPTG - YHF ¢ a perda por regressao e || - || é a norma de Frobenius; || P||;

é um termo de regularizacao Tr (RPTP> é o termo que contém a correlagdo entre
os rotulos. o e 8 sdo dois hiperparametros.

Agora, como a funcao objetivo do ML-TSKC-FS contém a norma Ly de P, que
¢é nao diferencidvel em relacdo a P, ndo podemos obter diretamente os gradientes
em P para otimizacdo. Técnicas eficientes de otimizacao foram desenvolvidas para
resolver esse problema comum em métodos baseados na norma L. Neste trabalho,
utilizamos o método de Descida de Gradiente Proximal [Combettes e Wajs 2005], que
é empregado para resolver a matriz P do ML-TSKC-FS. O processo de otimizagao
¢é descrito a seguir.

Os pardmetros 6timos de nosso modelo sao obtidos minimizando a Eq. (3.16) e

podem ser reescritos como:

1 2
P = argmin§ HPTG — YHF + B8P, + %Tr (RPTP)
P (3.17)
= argminf(P) + 8[| P,

com

f(P) = % PTG - YH; + %Tr (RPTP). (3.18)

Como tanto f(P) quanto a norma L; sdo convexos, e § > 0, o problema de
otimizacdo na Eq. (3.17) também é convexo. Além disso, a fungdo na Eq. (3.18) é

convexa e diferenciavel,
Vf(P)=GG'P-GYT +aPR. (3.19)
Além disso, f(P) satisfaz
IVf(P1) =Vf(P)| < Lf||PL— P, VP, Py, (3.20)

onde

Ly = /202, (GGT) + 202, (aR), (3.21)

€ Omax(+) indica o maior componente da matriz.
Assim, a Eq. (3.17) pode ser resolvida iterativamente. Para a t-ésima iteracao,

dado o ponto fixo P(t), f(P) pode ser aproximada usando uma expansao de Taylor
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de segunda ordem:
f(P)~

+{v

(#)

(P0). = P) 5 [P PO

P (p(t) - (p<t>)>

onde Cj é uma constante independente de P. Portanto, para a (t+1)-ésima iteracao,

f
/ (3.22)
2

+Co
F

a Eq. (3.17) pode ser aproximada por:

Py = arglgninf(P) +B]1P|x
(3.23)
= argmm— HP Z t)H + 5P|,
P

onde Z® = p®) _ Vf (P(t)) /Ly¢. Entao, a Eq. (3.23) pode ser resolvida pela

seguinte regra de atualizacao:
P =S5/, [Z(t)] (3.24)

onde Sg/r, [Z (t)} é a funcao de limiar suave, definida para Z(®) = [2i;] € B/ Ly como
segue:
—ﬁ/Lf, se Zij>6/Lf
(SB/Lf [Z(t)})ij =zij+0B/Lf, sezj<—B/Lys (3.25)
0, caso contrario.

Além disso, para obter a solugdo 6tima da Eq. (3.17) de forma mais eficiente,
primeiro obtemos a solu¢ao considerando apenas o primeiro termo da Eq. (3.16) e
tomamos isso como o valor inicial (ou seja, o valor inicial de P) para as iteragdes
subsequentes no processo de aprendizado para resolver a Eq. (3.17). O processo

ocorre da seguinte forma.

A derivada em relagdo a P é dada por
Vf(P)=GG'P-GY"T +aPR. (3.26)
A partir de Vf(P) = 0, podemos derivar a seguinte aproximagao:
=2 (GGT)f1 GYT. (3.27)
Portanto, definimos o valor inicial de P como

—1
Py=2(GG" +~I) GY7, (3.28)
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onde v é um hiperparametro de regularizacdo, conforme definido para evitar
problemas numéricos associados & inversao de matrizes proximas da singularidade.
Assim, a introdugao de I contribui para a estabilidade da solucdo, adicionando um
termo diagonal que melhora as propriedades de condicionamento da matriz.
Para melhorar a velocidade de convergéncia do ML-TSKC-FS, redefinimos o ponto

fixo P na Eq. (3.23) em cada iteracao, atualizando-o para

(b—1— 1)

PY =P, +
by

(Pt — Pi1), (3.29)
onde a sequéncia (b;) satisfaz b7, | —b; 1 < b7, e P, é o resultado da t-ésima iteragao.

b
A

F(P)

A

>
'

Figura 3.8: Tlustracdo da trajetdria de P durante a Minimizacao

A Figura 3.8 ilustra o processo de ajuste dos parametros P durante o processo de
minimizacdo. Cada ponto no grafico representa os valores de P apds cada iteracéo,
mostrando como os pardmetros convergem para o ponto de minimo da funcio de

custo.

Transformacao da saida de valores reais a valores de rétulo

Apés o término do processo de treinamento, foram obtidos os melhores parametros
de aprendizagem, representados por P*. A partir desses pardmetros, a predi¢do dos

valores do modelo ML-TSKC-FS é realizada conforme a expressao:
y = PTg(x),

onde o vetor de saida y contém os valores reais previstos. No entanto, para
realizar a classificagio, é necessario converter esses valores reais em rotulos binarios.
Para isso, aplicamos a fungdo limiar ¢(-), que transforma o vetor de predigio conti-
nuo em um vetor de rétulos binarios y' = (y},%5, ..., yr )T, conforme definido pela

seguinte funcao:
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v = or (1))

_ 1, sey, >, G<i<D) (3.30)

0, caso contrario,
onde 7 representa o limiar ajustavel que define o ponto de corte para a classifi-
cagdo. Neste trabalho, o valor de 7 foi fixado em 0,5, com base em um processo de

validacdo cruzada para garantir a melhor performance.

3.2.3 Conclusao do capitulo

Neste capitulo, foi explicado o modelo de Sistema Fuzzy Multi-Rétulo Takagi-
Sugeno-Kang Choquet (ML-TSKC-FS), destacando como ele funciona e quais sao
suas principais partes. Esse modelo foi escolhido porque ajuda a capturar as intera-
¢oes entre diferentes caracteristicas, o que é muito importante em problemas onde
hé vérias classes (ou rétulos) ao mesmo tempo, e esses rétulos podem ter alguma
relagdo entre si.

Primeiro, foi discutida a estrutura do modelo ML-TSKC-F'S, enfatizando sua ca-
pacidade de lidar com dados que tém alguma incerteza ou falta de precisao. Depois,
exploramos o processo de aprendizagem do modelo e como ele ajusta seus parame-
tros. Finalmente, foi feita a escolha da func¢ao limiar, que foi definido para ajudar
o modelo a transformar os valores continuos da saida em 0 ou 1, para representar a
presenca ou auséncia de um rétulo.

Os exemplos e explicagdes dadas ao longo do capitulo mostram que o modelo ML-
TSKC-FS é promissor para problemas de classificacdo multi-rétulo, especialmente
onde é preciso lidar com relacbes complexas entre as varidaveis. Assim, o conteido
deste capitulo forneceu uma base tedrica importante para entender o modelo. No
préximo capitulo vamos explorar como o modelo (ML-TSKC-FS) se comporta em

testes praticos e comparacdes com outros métodos.






Capitulo 4

METODOLOGIA
EXPERIMENTAL

Neste capitulo, serd detalhada a metodologia experimental utilizada para avaliar o
desempenho do modelo ML-TSKC-FS em cenérios de classificacdo multi-rétulo. O
objetivo é mostrar, de forma clara, os passos que seguimos para configurar e testar o
modelo, assim como as métricas que usamos para medir a performance do modelo.

Primeiro, apresentamos as bases para a andlise experimental, explicando as téc-
nicas e ferramentas que usamos, além das principais caracteristicas dos conjuntos de
dados. Em seguida, descrevemos como organizamos os experimentos, incluindo os
parametros ajustados e o uso de validagdo cruzada para garantir que as conclusoes
fossem o mais precisas e confidveis possivel.

Um ponto importante deste capitulo é a comparacao entre o modelo ML-TSKC-
FS e sua versado anterior, o ML-TSK FS. Usamos diferentes tipos de medidas fuzzy
para entender melhor o impacto da integracdao das medidas fuzzy com a integral de
Choquet e ver se essa nova abordagem realmente melhora o desempenho.

Além disso, comparamos o desempenho do ML-TSKC-FS com outros métodos
conhecidos da literatura. Essa comparacao é essencial para ver como o nosso modelo
se posiciona em relagao aos modelos que ja existem, o que nos ajuda a entender tanto
suas vantagens quanto suas limitacoes.

Dessa forma, este capitulo ndo apenas descreve os procedimentos seguidos, mas

também justifica as escolhas feitas e destaca a importancia dos resultados obtidos,

79
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mostrando como o ML-TSKC-FS pode contribuir para melhorar as técnicas de clas-

sificagdo multi-rétulo.

4.1 FERRAMENTAS DE ANALISE EXPERIMENTAL

Nesta secao, serdo apresentados os principais elementos utilizados para avaliar o
desempenho do modelo, justificando sua importancia para a andlise experimental.
Conjuntos de dados, métricas, testes estatisticos e validacido cruzada desempenham
papéis essenciais ao garantir que o classificador seja robusto, preciso e confidvel.
Cada um desses elementos contribui para uma avaliagdo rigorosa, assegurando que

o modelo generalize bem para novos dados.

4.1.1 Descricao dos Conjuntos de Dados Utilizados

Os experimentos foram feitos com dados de diferentes areas, como som, texto, ima-
gem e genética/biologia, obtidos do repositério MULAN!.

A escolha dos conjuntos de dados buscou representar varios desafios que o mo-
delo ML-TSKC FS pode encontrar em diferentes situagoes. A variedade de dreas
ajuda a avaliar como o modelo lida com tipos variados de dados. Por exemplo, os
dados de audio, como o Birds, apresentam desafios por causa de ruidos e mudan-
¢as nas caracteristicas do som, enquanto os dados de imagem, como o Corel5k, tém
uma sobreposicdo de rétulos e muita informagao visual. Ja os dados de genética,
como o Yeast, trazem relagoes complexas entre rétulos que sdo essenciais para uma
classificacao precisa. Essa diversidade permite uma analise completa da capacidade
do modelo. A seguir, sdo apresentados os conjuntos de dados usados no trabalho,

separados por categoria.
¢ Som

— Cal500 [Turnbull et al. 2008]: Esse conjunto traz informagoes sobre mi-
sicas, com 174 rétulos e 68 atributos. Aqui, o desafio é que o ntimero
de rétulos é muito maior que o de atributos, o que torna a tarefa de

classificagdo mais complicada.

— Birds [Briggs, Huang et al. 2013]: Usado para prever espécies de aves a
partir de gravacoes de dudio. Nesse caso, varias espécies podem ser de-
tectadas em uma mesma gravacgao, e o modelo precisa lidar com possiveis

ruidos e confusoes no som.

— Emotions [Tsoumakas, Katakis e Vlahavas 2008]: Classifica musicas de
acordo com as emogoes que elas transmitem. Esse conjunto tem 72 atri-
butos e 6 categorias emocionais, o que testa a capacidade do modelo de

entender nuances de sentimento nas musicas.

"https://mulan.sourceforge.net/datasets-mlc.html
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Os conjuntos de dados de Cal500, Birds e Emotions sdo tteis para entender
como o modelo lida com dados de dudio, que podem ter ruidos e sobreposicées
de sinais. Esses testes ajudam a avaliar a eficiéncia do modelo em capturar

detalhes sonoros.
e Texto

— Bibtex [Katakis, Tsoumakas e Vlahavas 2008]: Dados usados para re-
comendar etiquetas em entradas bibliograficas, com 1836 atributos e 159
rétulos. O desafio aqui é a quantidade de atributos, tipica em dados de
linguagem.

— Rcvlsl e Revls2 [Lewis et al. 2004]: Conjuntos de dados com 6000
artigos sobre diferentes assuntos. Esses dados sdo uteis para ver como
o modelo lida com textos complexos e multiplas classificacbes ao mesmo

tempo.

Nos conjuntos de dados de Bibtex, Rcv1lsl e Rcv1s2, o modelo precisa lidar
com uma grande quantidade de atributos e rétulos, o que é comum em tarefas

de processamento de textos.
e Imagem

— Corell6k1 [Nando 2003] e Mirflickr: Dados de classificacao de imagens
com muitos atributos, que exigem que o modelo interprete detalhes visuais

complexos.

— Image [Zhang e Zhou 2007]: Conjunto com 2000 imagens transformadas
em vetores de 294 dimensdes. As imagens foram convertidas para um

espacgo de cores especifico, o que pode adicionar varia¢des nos dados.

— Flags [Gongalves et al. 2013]: Dados sobre bandeiras, com 194 instancias
e 19 caracteristicas, como cores e simbolos. Esse conjunto exige que o

modelo relacione aspectos visuais com simbolos especificos.

— Scene [Boutell et al. 2004]: Conjunto de imagens de cenas, com 2407
imagens e 6 classes. Aqui, o desafio é identificar corretamente varias

categorias em uma Unica imagem.

Os conjuntos de dados de Corell6k1, Mirflickr, Image, Flags e Scene sao
usados para classificacdo de imagens e apresentam o desafio de lidar com gran-

des quantidades de detalhes visuais e categorias multiplas ao mesmo tempo.

« Genética/Biologia
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— Yeast [Elisseeff e Weston 2001]: Conjunto de dados biolégicos sobre genes
de levedura, com até 14 categorias funcionais. Esse é um dos mais de-
safiadores, pois erros podem afetar diretamente a interpretacdo de dados

biologicos.

A variedade dos conjuntos de dados permite uma avaliacdo completa do modelo
ML-TSKC FS. Cada dominio tem desafios especificos, desde alta quantidade de
atributos até ruidos nos dados. Isso ajuda a ver se o modelo consegue generalizar
bem em situagoes diferentes e lidar com varios tipos de rétulos ao mesmo tempo.

A Tabela 4.1 apresenta um resumo das principais caracteristicas dos conjuntos
de dados utilizados no estudo, incluindo o ntimero de instancias, atributos e rétulos,
além do dominio. No Apéndice B, vocé pode encontrar algumas das bases de dados

da Tabela 4.1 apresentadas com mais detalhes.

Conjuntos de Dados Instiancias Atributos Roétulos Dominio

Bibtex 7395 1836 159 Texto
Birds 645 260 19 Audio
Cal500 502 68 174 Audio
Corell6k1 13766 500 153 Imagem
Emotions 593 72 6 Audio
Flags 194 19 7 Imagem
Image 600 294 ) Imagem
Mirflickr 25000 1000 38 Imagem
Revlsl 6000 944 101 Texto
Revls2 6000 944 101 Texto
Scene 2407 294 6 Imagem
Yeast 2417 103 14 Gen/Bio

Tabela 4.1: Resumo dos conjuntos de dados utilizados no estudo.

4.1.2 Meétricas de Avaliacao

Para avaliar o desempenho do modelo ML-TSKC FS, foram escolhidas métricas que
medem diferentes aspectos importantes da classificacdo multi-rétulo. Essas métricas
sao reconhecidas na literatura como teis para entender o comportamento do modelo

em tarefas com multiplos rétulos [Schapire e Singer 2000].

o Average Precision (AP): Mede se o modelo acerta a ordem dos rétulos
mais importantes nas primeiras posi¢oes. Em outras palavras, ela verifica se o
modelo estd dando prioridade aos rétulos corretos para cada instancia. A AP

¢é definida como:
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1 &1 S (@i, r) € Li:rank(f(ai, 7)) < rank(f(2:, k)
AP = Z|L|Z rank(f (@, K)) 1)

Aqui, L; é o conjunto de rétulos corretos para a instancia i, e rank(f(x;, k))
representa a posigdo (ou “ranking”) do rétulo k na lista do modelo. Quanto
maior o valor de AP, melhor o modelo estd acertando a ordem dos rétulos,

mostrando que ele estd priorizando corretamente os mais importantes.

e Hamming Loss (HL): Mede a propor¢ao de rétulos que o modelo previu
errado, ou seja, quantos rétulos ele classificou incorretamente. Ele calcula a

taxa de erro em todas as instancias e é definido como:

1 &y @ 9l
— _ 4.2

Aqui, y; é o conjunto de rétulos corretos para a instancia 4, §; é o conjunto de
rotulos previstos pelo modelo, e L é o niimero total de rétulos. Um valor de
HL mais baixo indica que o modelo esta errando menos rétulos e, portanto, é

mais preciso.

o Ranking Loss (RL): Mede se o modelo coloca rétulos irrelevantes acima
dos rétulos corretos na lista de previsdo. Em outras palavras, verifica se a

ordenacio dos rétulos pelo modelo estd invertida. E definida como:

RL Z {(rj,mk) € Li x L; : rank(f(xi,rj)) > rank(f(zi, 7))}

i (4.3
Ll x I )

=1

Nesta férmula, L; sdo os rotulos corretos e L; sao os rétulos incorretos. Um RL
baixo significa que o modelo esta colocando corretamente os rétulos relevantes

nas primeiras posicoes, o que ¢é ideal para uma boa classificacao.

o Coverage (CV): Mede o quanto o modelo precisa percorrer a lista para en-
contrar todos os rétulos corretos. Em outras palavras, ela mede a profundidade

da lista onde est4 o tltimo rétulo correto. A CV é calculada como:

rel;

1N
CV = N 22::1 <max rank(f(zi,r)) — 1) (4.4)

Um valor de CV mais baixo indica que o modelo acerta os rétulos corretos mais

cedo na lista, o que é desejavel. Isso mostra que o modelo estd priorizando
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os rétulos importantes logo no inicio, ao invés de colocé-los em posigoes mais

baixas.

4.1.3 Testes de Significincia Estatistica

Para garantir que as diferencgas nos resultados obtidos nos experimentos sao confia-
veis, foram aplicados testes estatisticos de significdncia. Esses testes nos ajudam a
verificar se os modelos realmente tém desempenhos diferentes ou se as variacdes nos
resultados podem ter ocorrido por acaso.

Teste de Friedman: E utilizado para analisar as diferencas de desempenho
entre multiplos algoritmos em diferentes conjuntos de dados. Esse teste é util para
situacoes em que queremos comparar mais de dois modelos ao mesmo tempo, veri-
ficando se ha alguma diferenca significativa entre eles.

As hipéteses do teste de Friedman sao:
e Hj: Nao ha diferenca significativa de desempenho entre os algoritmos.
e H;: Existe uma diferenca significativa de desempenho entre os algoritmos.

A estatistica de Friedman é calculada como:

(N - Dxk
Fp=——r JAF 45
FONE-1) =2 (45)
€
12N K(K +1)?
= RE 1 1) Zk Rank 4 (46)

onde N é o ntimero de conjuntos de dados, K é o niimero de algoritmos, e Ranky,
representa a média das posicoes de cada algoritmo. Se o valor de x? for maior que
o valor critico, rejeitamos Hy, indicando que hé uma diferenga significativa entre os
algoritmos.

Teste Post-Hoc Bonferroni-Dunn: Caso o teste de Friedman indique uma
diferenca significativa, o teste de Bonferroni-Dunn é usado para identificar quais
pares de algoritmos apresentam essa diferenca. Esse teste é util para comparacoes
especificas entre pares de algoritmos, ajudando a identificar qual modelo se destaca.

A diferenca critica para o teste de Bonferroni-Dunn é calculada como:

K(K +1)

OD =4\ —4x

(4.7)

onde ¢, é o valor critico para o nivel de significincia escolhido (por exemplo,
a = 0,05). Se a diferenga entre as médias de dois algoritmos for maior que o valor

de CD, podemos concluir que essa diferenca é significativa.
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Comparagao entre Dois Algoritmos usando o Teste de Wilcoxon
Para comparar o desempenho de apenas dois algoritmos, utilizamos o teste de Wil-
coxon, um teste ndo paramétrico que verifica se ha diferenga significativa entre os
dois modelos.

As hipéteses do teste de Wilcoxon séo:
e Hy: Nao ha diferencga significativa entre os desempenhos dos dois algoritmos.
e Hy: Ha uma diferenca significativa entre os desempenhos dos dois algoritmos.

Para aplicar o teste, calculamos a diferenca de desempenho entre os dois algorit-
mos em cada conjunto de dados, atribuindo rangos as diferencas. A estatistica do

teste de Wilcoxon é baseada nos rangos positivos e negativos e é dada por:

W =min(W*, W) (4.8)

onde W e W™ sdo as somas dos rangos positivos e negativos, respectivamente.
Se o valor de W for menor que o valor critico, rejeitamos Hy, indicando que hé uma
diferenca significativa entre os dois algoritmos.

Esses testes nos ajudam a avaliar se as diferencas observadas entre os modelos sao
estatisticamente confiaveis, dando mais seguranca ao escolher o modelo que melhor

se adapta ao problema.

4.1.4 Procedimentos de Avaliacao

Para obter uma estimativa confidvel do desempenho do modelo ML-TSKC FS, foi
adotado o método de validagao cruzada em cinco partes (5-fold). Esse método
permite testar o modelo em varias divisdes do conjunto de dados, ajudando a reduzir
o viés que poderia ocorrer se apenas uma divisdo fosse usada. A validagdo cruzada
com cinco ou dez partes é amplamente recomendada, pois oferece um equilibrio entre
viés e variabilidade nos resultados, sendo muito utilizada para avaliar a precisdo de
modelos de aprendizado de maquina [Hastie, Tibshirani e Friedman 2009; Gareth
et al. 2013].
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Figura 4.1: Tlustragdao da validac¢do cruzada de cinco partes (5-fold).

A Figura 4.1 mostra como funciona o processo de validagdo cruzada. Em cada
uma das cinco etapas, uma parte do conjunto de dados é usada como teste, enquanto
as outras partes sao usadas para treinar o modelo. Esse processo é repetido cinco
vezes, de forma que cada parte seja usada uma vez como teste. Esse método ajuda
a avaliar o desempenho de forma mais precisa e confidvel, diminuindo o efeito de
possiveis variagoes nos dados [Hastie, Tibshirani e Friedman 2009].

Além disso, o modelo ML-TSKC FS foi comparado com outros algoritmos conhe-
cidos para classificagdo multi-rétulo. Essa comparacao é importante para entender
as vantagens do modelo proposto e ver se ele realmente traz melhorias em termos
de precisao, capacidade de generalizacdo e robustez.

No Apéndice A, encontra-se a parte do codigo onde a Integral de Cho-
quet é implementada no modelo ML-TSK FS, permitindo a obtencdo dos

resultados apresentados na proxrima secdo.

4.2 RESULTADOS E DISCUSSOES

Nesta secao, sdo apresentados os parametros utilizados para obter os resultados
do modelo ML-TSKC-FS em diferentes conjuntos de dados. Primeiramente, explo-
ramos os efeitos das diferentes medidas fuzzy na Integral de Choquet, realizando
um estudo comparativo entre o modelo proposto, ML-TSKC-FS, e o modelo origi-
nal, ML-TSK FS. Essa andalise tem como objetivo avaliar o impacto da integragao
da Integral de Choquet no desempenho do modelo. Em seguida, conduzimos uma
comparacao entre o modelo ML-TSKC-FS e os modelos tradicionais da literatura,
destacando as principais vantagens e limitacoes de cada abordagem. Em ambas as

etapas, os resultados obtidos foram submetidos a testes estatisticos, com o intuito
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de proporcionar uma compreensao mais aprofundada e rigorosa das diferencas de

desempenho observadas.

4.2.1 Configuracao do Experimento

Para garantir uma avaliagdo completa e confidvel do desempenho do ML-TSKC FS
em tarefas de classificagdo multi-rotulo, adotamos protocolos de teste detalhados.
Esses protocolos foram projetados para testar o modelo em diferentes condicoes,
permitindo comparag¢des com modelos de referéncia.

Parametros do Modelo:

Os parametros ajustdaveis do ML-TSKC FS, como «, (3, v, o nimero de regras
k, e o parametro fuzzy h, foram otimizados por meio de uma busca em grade, como

mostrado na Tabela 4.2. Cada um desses parametros tem um papel importante:

e Os parametros a e § sdo usados, respectivamente, para ajustar o peso do

aprendizado de correlacdo e a complexidade do modelo.

e ~: Define a estabilidade do modelo, garantindo que ele nao oscile muito entre

diferentes execugoes.

e h: Ajusta a sensibilidade das fung¢oes fuzzy, permitindo que o modelo se adapte

melhor as variacoes dos dados.

e k: Determina o nimero de regras fuzzy. Valores mais altos de k& permitem

capturar mais detalhes nos dados, mas aumentam a complexidade do modelo.

Esses parametros foram ajustados por meio de uma busca em grade, um processo
que explora diferentes combinacgoes de valores para identificar a configuragao ideal.
Esse processo é essencial para garantir que o modelo seja otimizado e tenha um
desempenho consistente em cada conjunto de dados.

A Tabela 4.2 mostra os valores testados para cada pardmetro durante a busca
em grade. Esses valores foram selecionados com base em literatura e testes iniciais,
cobrindo uma gama ampla para encontrar a melhor configuracdo para o modelo
ML-TSKC FS em cada conjunto de dados.

Parametro Valores Testados
@ {0.01,0.1,1,10, 100}
I3 {0.01,0.1,1,10, 100}
0% {0.01,0.1,1,10,100}
K {1,2,3,4,5,6,7,8,9,10}
h {0.01,0.1,1,10, 100}

Tabela 4.2: Configuracdo dos pardmetros.
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Apresentagao dos Resultados

Os resultados sao apresentados em duas partes: primeiro, analisamos como as dife-
rentes medidas fuzzy afetam o desempenho do modelo, buscando identificar aquelas
que proporcionam melhores resultados. Em seguida, comparamos o desempenho
do nosso melhor modelo com nove outros classificadores multi-rétulo que utilizam
abordagens diferentes. Essa comparacio é essencial para avaliar se nosso modelo
realmente traz melhorias em relacdo a métodos ja existentes para classificacdo multi-

rotulo.

4.2.2 Estudo Comparativo entre o ML-TSKC FS (com diferentes
medidas fuzzy) e o ML-TSK FS

Nesta se¢do, apresentamos um estudo comparativo entre o modelo original ML-
TSK FS proposto por Lou [Lou et al. 2021], e o modelo ML-TSKC FS com
diferentes medidas fuzzy. KEssas variacbes incluem as configuragoes Choq Uni,
Choq Rel, Choq Pro, Choq Pot e Choq Pon, onde cada uma representa um tipo
especifico de medida fuzzy aplicada: Uni (Uniforme), Rel (Relativa), Pro (Produto),
Pot (Poténcia) e Pon (Ponderada).

Para avaliar o desempenho de cada modelo, foram utilizadas métricas especifi-
cas: AP, HL, RL e CV. Como explicado na Secdo 4.1.2, essas métricas permitem
mensurar a precisao do modelo, o erro de classificacdo, bem como a profundidade
necessaria para que todos os rétulos verdadeiros sejam corretamente cobertos. Esse
estudo comparativo visa identificar a eficacia de cada variagdo do modelo ML-TSKC
FS em relagao ao ML-TSK FS original, proporcionando uma visdo mais aprofundada
sobre o impacto das diferentes medidas fuzzy no desempenho de classificacao.

Nas tabelas, os valores destacados em (azul) indicam o melhor desempenho entre

os modelos para cada métrica e conjunto de dados. Para facilitar a interpretacao:

e A seta | indica que, para essa métrica, valores menores representam melhor

desempenho.

e A seta T indica que, para essa métrica, valores maiores indicam melhor desem-

penho.
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Dataset ML-TSK FS Choq Uni Choq Rel Choq Pro Choq Pot Choq Pon
Bibtex 0.61(0.00)  0.61(0.01) 0.61(0.01) 0.62(0.01) 0.61(0.02)  0.62(0.01)
Birds 0.34(0.03)  0.37(0.05)  0.37(0.03)  0.37(0.01)  0.37(0.04)  0.37(0.06)
Cal500 0.52(0.01) 0.52(0.01)  0.52(0.01)  0.52(0.01)  0.52(0.01) 0.52(0.02)
Corell6kl  0.35(0.01)  0.36(0.00) 0.36(0.01)  0.36(0.00)  0.36(0.00)  0.36(0.00)
Emotions  0.82(0.01)  0.82(0.03)  0.82(0.01) 0.82(0.01)  0.82(0.02)  0.82(0.03)
Flags 0.82(0.01)  0.84(0.02)  0.84(0.03) 0.83(0.02)  0.83(0.04)  0.83(0.03)
Image 0.79(0.03)  0.79(0.04)  0.79(0.02)  0.79(0.04)  0.79(0.04)  0.80(0.03)
Mirflickr 0.53(0.00)  0.53(0.00)  0.53(0.00)  0.53(0.00)  0.53(0.00)  0.53(0.00)
Revlsl 0.61(0.00)  0.62(0.00) 0.62(0.01) 0.62(0.01)  0.62(0.01)  0.62(0.01)
Revls2 0.64(0.01) 0.64(0.01)  0.64(0.01)  0.64(0.01)  0.64(0.01)  0.64(0.01)
Scene 0.86(0.01)  0.86(0.01)  0.86(0.01)  0.86(0.01)  0.86(0.01)  0.86(0.00)
Yeast 0.76(0.01)  0.77(0.01)  0.77(0.00)  0.77(0.01)  0.77(0.01)  0.77(0.01)

Tabela 4.3: Resultados de (AP) 1: ML TKS-FS vs Choquet
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Figura 4.2: Diagrama de barras (AP) 1 : Choquet vs ML TKS-FS

Average Precision (AP): A Tabela 4.3 e a Figura 4.2 mostram os resultados
de AP, comparando o ML-TSKC FS com o modelo original ML-TSK FS. Notamos

que o ML-TSKC FS tem melhor desempenho em varios conjuntos de dados. Esse

ganho de precisao ocorre porque a Integral de Choquet consegue capturar interagoes

complexas entre rotulos, especialmente quando eles sdo interdependentes.

Além disso, podemos observar que na maioria de conjuntos de dados a configu-

racdo Choq Pon apresentam um desempenho superior. Esses resultados sugerem

que essas variante consegue lidar melhor com a interagdo entre rétulos.
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Dataset ML-TSK FS Choq Uni Choq Rel Choq Pro Choq Pot Choq Pon

Bibtex 0.01(0.00)  0.01(0.00)  0.01(0.00) 0.01(0.00)  0.01(0.00)  0.01(0.00)
Birds 0.05(0.01)  0.04(0.00)  0.04(0.00)  0.04(0.00)  0.04(0.00)  0.04(0.01)
Cal500 0.14(0.00) 0.13(0.00)  0.13(0.00)  0.13(0.00)  0.13(0.00) 0.13(0.00)
Corell6kl  0.02(0.00)  0.01(0.00)  0.01(0.00)  0.01(0.00) L (0.00)  0.01(0.00)
Emotions  0.19(0.01)  0.19(0.01)  0.19(0.01)  0.19(0.01)  0.19(0.01)  0.19(0.01)
Flags 0.26(0.03)  0.24(0.03)  0.25(0.03) 0.25(0.03)  0.24(0.01)  0.25(0.01)
Tmage 0.18(0.01)  0.18(0.01)  0.17(0.01)  0.18(0.01)  0.18(0.01)  0.18(0.00)
Mirflicke ~ 0.15(0.00)  0.15(0.00)  0.15(0.00)  0.15(0.00)  0.15(0.00)  0.15(0.00)
Revlsl 0.03(0.00)  0.02(0.00)  0.02(0.00) 0.02(0.00)  0.02(0.00)  0.02(0.00)
Revls2 0.02(0.00)  0.02(0.00)  0.02(0.00)  0.02(0.00)  0.02(0.00)  0.02(0.00)
Scene 0.11(0.01)  0.10(0.01)  0.10(0.00)  0.10(0.01) 7)(0 01)  0.10(0.01)
Yeast 0.20(0.01)  0.19(0.00) 0.19(0.01)  0.19(0.00)  0.19(0.01)  0.19(0.01)
Tabela 4.4: Resultados de (HL) J: ML TKS-FS vs Choquet
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Figura 4.3: Diagrama de barras (HL) | : Choquet vs ML TKS-FS

Hamming Loss (HL): Os resultados na Tabela 4.4 e a Figura 4.3 indicam
uma reducdo no erro de classificacdo para o modelo ML-TSKC FS em comparagao
com o ML-TSK FS. A reducao no HL significa que o ML-TSKC FS é mais preciso
na classificacdo, minimizando os erros. As variantes Choq Rel e Choq Pon se
destacam, sugerindo que essas variantes sdo especialmente uteis para minimizar o

erro.
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Dataset ML-TSK FS Choq Uni Choq Rel Choq Pro Choq Pot Choq Pon

Bibtex 0.07(0.00)  0.06(0.00) 0.06(0.00)  0.06(0.00)  0.06(0.00)  0.06(0.00)
Birds 0.09(0.02)  0.07(0.01) 0.07(0.01)  0.07(0.02)  0.07(0.01)  0.07(0.02)
Cal500 0.18(0.00)  017(0.01)  0.17(0.00) 0.17(0.00)  0.17(0.00)  0.17(0.00)
Corell6kl  0.14(0.00)  0.13(0.00)  0.13(0.00)  0.13(0.00)  0.13(0.00)  0.14(0.00)
Emotions  0.15(0.02)  0.15(0.03)  0.15(0.02) 0.14(0.01)  0.14(0.02)  0.14(0.01)
Flags 0.21(0.02)  0.19(0.03)  0.19(0.05)  0.20(0.03)  0.19(0.04)  0.20(0.03)
Image 0.17(0.03)  0.17(0.03)  0.17(0.01)  0.17(0.02)  0.17(0.03)  0.18(0.02)
Mirflicke ~ 0.20(0.00)  0.19(0.00)  0.19(0.00)  0.19(0.00)  0.19(0.00)  0.19(0.00)
Revlsl 0.05(0.00)  0.04(0.00)  0.04(0.00)  0.04(0.00)  0.04(0.00)  0.04(0.00)
Revls2 0.05(0.00)  0.04(0.00)  0.04(0.00)  0.04(0.00)  0.04(0.00)  0.04(0.00)
Scene 0.08(0.01)  0.08(0.01)  0.08(0.00)  0.08(0.00)  0.08(0.00)  0.08(0.01)
Yeast 0.17(0.01)  0.16(0.01) 0.16(0.01) 0.16(0.01) 0.16(0.01)  0.16(0.01)

Tabela 4.5: Resultados de (RL) J: ML TKS-FS vs Choquet
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Figura 4.4: Diagrama de barras (RL) | : Choquet vs ML TKS-FS

Ranking Loss (RL): A Tabela 4.5 e a Figura 4.4 mostram que as variantes
Choq Pro, Choq Pot ¢ Choq Pon frequentemente apresentam valores mais bai-
xos de RL, indicando uma melhor ordenagao dos rétulos relevantes em comparagao
com o modelo ML-TSK FS. Isso sugere que essas variantes ajudam a organizar cor-
retamente a relevancia dos rétulos, o que é essencial em cendrios onde a hierarquia

dos rétulos importa.
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Dataset ML-TSK FS Choq Uni Choq Rel Choq Pro Choq Pot Choq Pon

Bibtex 0.12(0.01)  0.12(0.00) 0.12(0.00)  0.12(0.01)  0.12(0.01)  0.12(0.00)
Birds 0.11(0.03)  0.10(0.01)  0.09(0.02)  0.09(0.02)  0.09(0.01)  0.09(0.03)
Cal500 0.73(0.01)  0.71(0.01)  0.72(0.02)  0.72(0.02)  0.72(0.02)  0.72(0.02)
Corell6kl ~ 0.29(0.00)  0.25(0.00)  0.25(0.00)  0.26(0.01)  0.26(0.00) L (0.01)
Emotions  0.28(0.03)  0.28(0.02)  0.28(0.02)  0.28(0.02)  0.28(0.02) 28(0.01)
Flags 0.52(0.01)  0.51(0.02)  0.51(0.03)  0.53(0.03)  0.52(0.02) 53(0.03)
Tmage 0.18(0.02)  0.19(0.02)  0.18(0.01)  0.18(0.02)  0.18(0.02) 0. 19(0 02)
Mirflickr 0.42(0.00)  0.42(0.00)  0.42(0.00)  0.42(0.00)  0.42(0.00)  0.42(0.01)
Revlsl 0.11(0.00)  0.11(0.01)  0.11(0.01) 0. 11(0 01)  0.11(0.00) 0. 11(0 01)
Revls2 0.12(0.01)  0.11(0.01)  0.11(0.01) 0.11(0.00)  0.11(0.00)  0.10(0.01)
Scene 0.08(0.01) 08(0.01)  0.08(0.00)  0.08(0.00)  0.08(0.00)  0.08(0.01)
Yeast 0.46(0.01)  0.45(0.01)  0.45(0.01)  0.45(0.01)  0.45(0.01)  0.45(0.01)

Tabela 4.6: Resultados de (CV) |: ML TKS-FS vs Choquet
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Figura 4.5: Diagrama de barras (CV) | : Choquet vs ML TKS-FS

Coverage (CV): Apresentada na Tabela 4.6 e Figura 4.5, indica a profundidade
necessaria para cobrir todos os rétulos verdadeiros. O modelo ML-TSKC FS com as
variantes Choq Uni e Choq Rel apresentou valores de CV mais baixos, sugerindo
que essas configuracoes sdo eficazes na hierarquia de rétulos, o que reduz o niimero
de rotulos a serem verificados.

Em resumo, os resultados indicam que o modelo ML-TSKC FS, com a inclusao
da Integral de Choquet, apresenta desempenho superior em relagdo ao ML-TSK
FS em quase todas as métricas e conjuntos de dados analisados. Essa melhoria
é especialmente relevante, pois demonstra a eficicia da Integral de Choquet em
capturar de forma mais precisa as interagoes entre os atributos, proporcionando
classificagoes mais robustas em cendrios complexos.

No entanto, ao comparar os resultados obtidos com diferentes medidas fuzzy
dentro do modelo baseado em Choquet, observou-se uma semelhanga nos desempe-

nhos. Isso pode ser explicado pela natureza das fungoes de agregacao, que tendem
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a capturar relagoes similares entre os dados, independentemente da medida fuzzy
selecionada. Além disso, é possivel que os dados testados ndo apresentem variabili-
dade suficiente ou caracteristicas suficientemente distintas para evidenciar diferencas
significativas entre as medidas, resultando em desempenhos préximos.

A seguir, faremos um estudo estatistico para verificar se as melhorias obtidas

nesta se¢do sdo estatisticamente significativas.

Estudo Comparativo Estatistico entre o ML-TSKC FS (com diferentes
medidas fuzzy) e o ML-TSK FS

Para verificar se as diferencas de desempenho entre o modelo ML-TSKC FS (com
medidas fuzzy baseadas na Integral de Choquet) e o modelo ML-TSK FS sao es-
tatisticamente significativas, realizamos um estudo utilizando o teste de Wilcoxon.

Essa andlise confirma a relevancia das melhorias observadas.

Teste de Wilcoxon: Esse teste nao paramétrico foi aplicado para comparacoes
emparelhadas entre o modelo ML-TSK FS e as versoes do ML-TSKC FS com dife-
rentes medidas fuzzy (Choq Uni, Choq Rel, Choq Pro, Choq Pot e Choq Pon). As
avaliagoes foram realizadas para as métricas AP (Average Precision), HL. (Hamming
Loss), RL (Ranking Loss) e CV (Cobertura).

Os resultados identificaram as configuragdes que apresentam ganhos significati-

vos, destacando as medidas fuzzy mais adequadas para diferentes cenarios.

e Resultados do Teste de Wilcoxon para AP: Na Tabela 4.7, vemos os
resultados do teste de Wilcoxon para a métrica de AP. Os valores de p para
todas as comparacgoes sao menores que 0,05, indicando que as versoes do mo-
delo ML-TSKC FS com medidas fuzzy superam o modelo ML-TSK FS em
termos de AP . Isso significa que essas variagdes com Choquet sdo mais efica-

zes em identificar rotulos corretamente.

Comparacao de Modelos Valor p
ML-TSK FS vs Choq Uni 0,04
ML-TSK FS vs Choq Rel 0,04
ML-TSK FS vs Choq Pro 0,02
ML-TSK FS vs Choq Pot 0,03
ML-TSK FS vs Choq Pon 0,01

Tabela 4.7: Resultados do Teste de Wilcoxon para AP

¢ Resultados do Teste de Wilcoxon para HL: A Tabela 4.8 mostra os resul-
tados para a HL. Aqui, o teste indica que todas as variantes de Choquet tém

um desempenho significativamente melhor, reduzindo o erro de classificagao
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em comparacao com o modelo ML-TSK FS. Isso significa que essas versoes

s80 mais precisas ao evitar classificagoes incorretas.

Comparacio de Modelos Valor p
ML-TSK FS vs Choq Uni 0,02
ML-TSK FS vs Choq Rel 0,01
ML-TSK FS vs Choq Pro 0,02
ML-TSK FS vs Choq Pot 0,02
ML-TSK FS vs Choq Pon 0,02

Tabela 4.8: Resultados do Teste de Wilcoxon para HL

e Resultados do Teste de Wilcoxon para RL: Na Tabela 4.9, vemos que
os valores de p sdo pequenos para as comparacgoes com todas as variantes de
Choquet. Isso sugere que essas variantes ajudam o modelo a classificar melhor

os rotulos, ordenando corretamente os mais importantes.

Comparacio de Modelos Valor p
ML-TSK FS vs Choq Uni 0,01
ML-TSK FS vs Choq Rel 0,01
ML-TSK FS vs Choq Pro 0,00
ML-TSK FS vs Choq Pot 0,00
ML-TSK FS vs Choq Pon 0,01

Tabela 4.9: Resultados do Teste de Wilcoxon para RL

¢ Resultados do Teste de Wilcoxon para CV: Por fim, a Tabela 4.10 apre-
senta os resultados para a métrica CV. Observa-se que as variantes Choq Rel
e Choq Pot foram mais eficazes em identificar os rétulos mais relevantes de
forma mais rapida, exigindo uma menor profundidade de busca. Isso indica
que essas variantes tornam o modelo mais eficiente, permitindo localizar os ré-
tulos corretos com maior agilidade. Para as demais variantes, onde p é maior
que 0,05, as diferengas de desempenho em relagdo ao modelo ML-TSK FS nao

sao estatisticamente significativas.

Comparacao de Modelos Valor p
ML-TSK FS vs Choq Uni 0,09
ML-TSK FS vs Choq Rel 0,02
ML-TSK FS vs Choq Pro 0,11
ML-TSK FS vs Choq Pot 0,04
ML-TSK FS vs Choq Pon 0,12

Tabela 4.10: Resultados do Teste de Wilcoxon para CV
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Os resultados dos testes mostram que o modelo ML-TSKC FS, usando diferen-
tes variantes da Integral de Choquet, como Choq Rel, Choq Pro e Choq Pon,
supera o modelo tradicional ML-TSK FS em vérias métricas. Esses valores
de p pequenos indicam que essas melhorias sdo estatisticamente significati-
vas. Assim, as medidas fuzzy adicionadas realmente aumentam a precisao e

eficiéncia do modelo em identificar rotulos relevantes.

Em resumo, os resultados dos testes de Wilcoxon indicam que o modelo ML-
TSKC FS, ao utilizar diferentes medidas fuzzy na Integral de Choquet, supera o
modelo ML-TSK FS em diversas métricas, confirmando que as melhorias observadas
sdo estatisticamente significativas.

Na proxima secdo, analisaremos como o modelo ML-TSKC FS se compara a
outros métodos consolidados na literatura. Para essa andlise, utilizaremos o mo-
delo com Integral de Choquet e Medida Fuzzy Ponderada (Choq Pon), pois
estudos prévios demonstraram que essa configuragdo do ML-TSKC FS alcanca os

melhores resultados.

4.2.3 Estudo Comparativo entre o ML-TSKC FS e Modelos de Re-
feréncia da Literatura

Para avaliar o desempenho do modelo ML-TSKC FS, realizamos uma anélise com-
parativa com varios modelos amplamente utilizados na area de classificacdo multi-
rotulo. Esses modelos representam diferentes abordagens para resolver os desafios
dessa tarefa, como a interdependéncia entre rétulos e a complexidade dos dados. A
Figura 4.6 mostra uma linha do tempo com a evolugdo desses modelos, oferecendo
uma visao geral do desenvolvimento dessa area ao longo dos anos.

Os principais modelos de referéncia comparados estao descritos a seguir:

ML-KNN BR C2AE HNOML

2006 2011 2015 2018 2022

2007 2012 2017 2019
BP-MLL CC MLSF JBNN ML-TSK FS

Figura 4.6: Evolucao cronolégica dos modelos de classificacdo multi-
rétulo.

o BP-MLL [Min-Ling e Zhi-Hua 2006]: Este método foi um dos primeiros a usar
redes neurais para capturar a correlacdo entre rétulos, buscando melhorar a

precisao ao prever rétulos relacionados juntos.

e ML-KNN [Zhang e Zhi-Hua 2007]: Usa os k vizinhos mais préximos para
prever rétulos, adaptando uma técnica classica de aprendizado para o contexto

multi-rétulo.
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CC [Read et al. 2011]: Converte a tarefa multi-rétulo em varias classifica¢oes

binarias, possibilitando ajuste de pardmetros para cada rétulo.

BR [Leski 2002]: Trata cada rétulo como um problema separado de classifica-
¢ao bindria (Binary Relevance), uma abordagem que melhora a capacidade de
generalizacido da classificacdo fuzzy introduzindo o aprendizado e-insensitive

learning.

MLSF [Sun, Kudo e Kimura 2016]: Combina aprendizado de meta-rétulos
com selecido de caracteristicas, levando em conta as correlagoes entre rétulos

para melhorar a precisdo.

C2AE [Yeh et al. 2017]: Utiliza autoencoders para aprender representacoes

eficazes dos rétulos, util para problemas mais complexos.

JBNN [He e Xia 2018]: Usa multiplas fungoes de ativacdo para capturar

correlacgoes entre rotulos em uma rede neural.

HNOML [Zhang, Yu et al. 2019]: Foca em reduzir ruidos nos rétulos e ca-

racteristicas, melhorando o desempenho em dados com ruidos.

ML-TSK FS [Lou et al. 2021]: Aplica regras fuzzy (Takagi-Sugeno-Kang)
para capturar relacoes entre caracteristicas e rétulos, buscando previsdes mais

precisas e consistentes.

As métricas usadas para avaliar os modelos sdo as mesmas descritas na Segdo

4.1.2, com destaque em azul para os melhores resultados em cada conjunto de dados.

As Tabelas apresentam as médias dos resultados, obtidas a partir de validacdo cru-

zada em 5 partes, com desvios padrao para indicar a variagao dos resultados para o
ML-TSKC FS e os demais resultados da tabela sdo obtidos de Lou [Lou et al. 2021]
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Dataset ML-kNN HNOML MLSF cc BR C2AE BP-MLL JBNN ML-TSK FS ML-TSKC FS
Bibtex 0.35(0.01)  0.58(0.01) 0.37(0.02) 0.58(0.01) 0.60(0.01) 0.09(0.03) 0.54(0.01) 0.02(0.00)  0.61(0.00) 0.62(0.01)
Birds 0.22(0.02) 0.34(0.03) 0.26(0.03) 0.34(0.01) 0.33(0.03) 0.30(0.04) 0.34(0.02) 0.29(0.06)  0.34(0.03) 0.37(0.06)
Cal500 0.50(0.01) 0.43(0.18) 0.49(0.01) 0.46(0.01) 0.50(0.01) 0.33(0.02) 0.46(0.02) 0.45(0.01)  0.52(0.01) 0.52(0.02)
Corell6kl  0.28(0.00)  0.34(0.01) 0.28(0.01) 0.30(0.00) 0.34(0.00) 0.21(0.02) 0.26(0.01) 0.08(0.00)  0.35(0.01) 0.36(0.00)
Emotions  0.71(0.02)  0.80(0.03) 0.76(0.02) 0.78(0.00) 0.80(0.01) 0.57(0.03) 0.80(0.01) 0.76(0.02)  0.82(0.01) 0.82(0.03)
Flags 0.80(0.04) 0.81(0.01) 0.82(0.03) 0.80(0.04) 0.81(0.04) 0.74(0.06) 0.82(0.02) 0.80(0.04)  0.82(0.01) 0.83(0.03)
Image 0.74(0.02)  0.78(0.02) 0.72(0.02) 0.78(0.03) 0.79(0.03) 0.47(0.02) 0.79(0.02) 0.63(0.04)  0.79(0.03) 0.80(0.03)
Mirflickr  0.51(0.00)  0.51(0.00) 0.27(0.00) 0.48(0.00) 0.44(0.04) 0.45(0.02) 0.47(0.02) 0.42(0.03)  0.53(0.00) 0.53(0.00)
Revisl  0.49(0.01) 0.61(0.01) 052(0.02) 0.57(0.01) 0.60(0.01) 0.21(0.02) 0.53(0.05) 0.05(0.01)  0.61(0.00) 0.62(0.01)
Revls2  0.50(0.01) 0.63(0.00) 0.52(0.02) 0.58(0.01) 0.61(0.01) 0.18(0.04) 0.58(0.01) 0.05(0.01)  0.64(0.01) 0.64(0.01)
Scene 0.87(0.01)  0.85(0.01) 0.86(0.02) 0.84(0.01) 0.86(0.01) 0.42(0.01) 0.87(0.01) 0.59(0.03)  0.86(0.01) 0.86(0.00)
Yeast 0.76(0.02)  0.61(0.00) 0.75(0.02) 0.72(0.01) 0.76(0.01) 0.57(0.02) 0.74(0.01) 0.71(0.03)  0.76(0.01) 0.77(0.01)

Tabela 4.11: Resultados de (AP) : Classificadores vs. ML TKSC-FS
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Figura 4.7: Diagrama de barras de (AP): Classificadores vs. ML
TKSC-FS

Analise Comparativa de AP Com base na Tabela 4.11 e na Figura 4.7, que
mostram os resultados de AP) comparando o ML-TSKC FS com os modelos da

literatura, podemos chegar as seguintes conclusoes:

e« Desempenho Superior em Varios Conjuntos de Dados: O ML-TSKC
FS teve uma precisdo média superior em muitos conjuntos, como Bibtex, Birds

e Flags. Isso indica que ele é eficiente para priorizar rétulos importantes.

e Competicdo com Modelos de Rede Neural Profunda: Apesar de mode-
los como o C2AF e o JBNN terem bom desempenho, o ML-TSKC FS consegue
uma precisao comparavel ou melhor em varios casos, oferecendo uma alterna-

tiva mais simples e ficil de interpretar.

e Consisténcia: Em cenirios onde o numero de rétulos é bem menor que o

numero de atributos como os conjuntos Image e Scene, o ML-TSKC FS ainda



98 Capitulo 4. METODOLOGIA EXPERIMENTAL

apresenta um desempenho semelhante aos melhores da Literatura, mostrando

que ele pode ser eficaz em diferentes niveis de complexidade.

Os resultados mostram que o ML-TSKC FS nao s6 é preciso, mas também con-
segue capturar bem a relagdo entre réotulos. Sua vantagem sobre métodos mais
complexos sugere que ele é uma alternativa pratica e interpretavel para classificagao

multi-rétulo.

Dataset ML-kNN HNOML MLSF cc BR C2AE BP-MLL JBNN ML-TSK FS ML-TSKC FS
Bibtex 0.01(0.00)  0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.14(0.02) 0.02(0.00) 0.02(0.00)  0.01(0.00) 0.01(0.00)
Birds 0.05(0.00)  0.05(0.00) 0.05(0.01) 0.05(0.00) 0.06(0.00) 0.15(0.01) 0.18(0.02) 0.05(0.01)  0.05(0.00) 0.04(0.01)
CAL500  0.14(0.00) 0.14(0.01) 0.14(0.00) 0.14(0.00) 0.14(0.00) 0.19(0.01) 0.29(0.00) 0.14(0.00)  0.14(0.00) 0.13(0.00)
Corel16k1  0.02(0.00)  0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.21(0.02) 0.12(0.00) 0.02(0.00)  0.02(0.00) 0.01(0.00)
Emotions  0.26(0.01)  0.21(0.01) 0.24(0.02) 0.21(0.02) 0.20(0.01) 0.41(0.03) 0.22(0.02) 0.20(0.00)  0.19(0.01) 0.19(0.01)
Flags 0.33(0.03)  0.27(0.01) 0.26(0.05) 0.27(0.03) 0.27(0.03) 0.42(0.03) 0.30(0.04) 0.30(0.01)  0.26(0.03) 0.25(0.01)
Image 0.20(0.01)  0.23(0.02) 0.21(0.01) 0.19(0.03) 0.18(0.01) 0.46(0.04) 0.21(0.01) 0.21(0.00)  0.18(0.01) 0.18(0.00)
Mirflickr  0.15(0.00)  0.15(0.00) 0.15(0.00) 0.16(0.00) 0.16(0.01) 0.30(0.03) 0.31(0.00) 0.15(0.00)  0.15(0.00) 0.15(0.00)
Revisl  0.03(0.00) 0.03(0.00) 0.03(0.00) 0.03(0.00) 0.03(0.00) 0.17(0.02) 0.04(0.00) 0.03(0.00)  0.03(0.00) 0.02(0.00)
Revis2  0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.17(0.03) 0.03(0.00) 0.03(0.00)  0.02(0.00) 0.02(0.00)
Scene 0.09(0.00)  0.12(0.00) 0.09(0.01) 0.10(0.01) 0.10(0.01) 0.41(0.03) 0.11(0.00) 0.14(0.00)  0.10(0.01) 0.10(0.01)
Yeast 0.19(0.01)  0.30(0.00) 0.19(0.00) 0.21(0.01) 0.19(0.00) 0.34(0.04) 0.22(0.01) 0.21(0.01)  0.20(0.01) 0.19(0.01)

Tabela 4.12: Resultados de (HL): Classificadores vs. ML TKSC-FS
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Figura 4.8: Diagrama de barras de (HL): Classificadores vs. ML
TKSC-FS

Anaélise Comparativa de HL. Baseando-se na Tabela 4.12 e na Figura 4.8, que
apresentam os resultados de HL comparando o ML-TSKC FS com os modelos da

literatura, podemos destacar as seguintes observacoes:

¢ Redugao Significativa de Erros em Miltiplos Conjuntos de Dados: O
modelo ML-TSKC FS apresentou valores de HL. menores em varios conjuntos
de dados, incluindo Bibtezr, Birds e Flags. Isso demonstra que ele é eficaz em

minimizar erros de classificacdo, mesmo em tarefas multi-rotulo complexas.
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e Consisténcia em Conjuntos de Dados com Estruturas Variadas: Em
conjuntos de dados onde a complexidade da estrutura de rétulos é mais baixa,
como Image e Scene, o ML-TSKC FS também alcancou resultados sélidos.
Essa consisténcia sugere que o modelo é robusto e pode ser eficaz em diferentes

contextos de classificacdo multi-rétulo.

Os resultados indicam que o ML-TSKC FS é nao s6 eficiente em reduzir erros,
mas também robusto ao lidar com diferentes tipos de dados e configuragoes de
rotulos. Sua performance consistente e interpretabilidade tornam-no uma escolha
pratica para aplicagoes de classificagdo multi-rétulo, especialmente em cenarios onde

a simplicidade e precisdo sdo fundamentais.

Dataset ML-kNN HNOML MLSF cc BR C2AE BP-MLL JBNN ML-TSK FS ML-TSKC FS
Bibtex 0.21(0.01)  0.07(0.00) 0.14(0.01) 0.09(0.00) 0.08(0.00) 0.42(0.01) 0.08(0.01) 0.97(0.00)  0.07(0.00) 0.06(0.00)
Birds 0.16(0.01)  0.09(0.02) 0.08(0.02) 0.10(0.01) 0.10(0.02) 0.21(0.02) 0.10(0.01) 0.37(0.03)  0.09(0.02) 0.07(0.02)
CAL500  0.18(0.00) 0.14(0.08) 0.18(0.01) 0.23(0.01) 0.19(0.00) 0.16(0.19) 0.19(0.00) 0.28(0.02)  0.18(0.00) 0.17(0.00)
Corel16kl 0.17(0.00) 0.15(0.00) 0.14(0.01) 0.16(0.00) 0.16(0.00) 0.30(0.02) 0.15(0.00) 0.75(0.02)  0.14(0.00) 0.14(0.00)
Emotions ~ 0.26(0.02) 0.16(0.02) 0.11(0.02) 0.18(0.01) 0.17(0.02) 0.43(0.03) 0.16(0.01) 0.23(0.03)  0.15(0.02) 0.14(0.01)
Flags 0.24(0.04)  0.22(0.01) 0.12(0.02) 0.23(0.05) 0.22(0.04) 0.36(0.08) 0.21(0.03) 0.23(0.04)  0.21(0.02) 0.20(0.03)
Image 0.22(0.02) 0.18(0.02) 0.10(0.01) 0.18(0.03) 0.17(0.02) 0.52(0.03) 0.17(0.02) 0.37(0.05)  0.17(0.03) 0.18(0.02)
Mirflickr  0.21(0.00)  0.21(0.00) 0.26(0.00) 0.24(0.00) 0.32(0.04) 0.25(0.02) 0.21(0.01) 0.53(0.05)  0.20(0.00) 0.19(0.00)
Revlsl 0.09(0.00)  0.04(0.00) 0.08(0.01) 0.07(0.00) 0.06(0.00) 0.31(0.01) 0.07(0.01) 0.90(0.02)  0.05(0.00) 0.04(0.00)
Revls2 0.09(0.00)  0.04(0.00) 0.06(0.00) 0.07(0.00) 0.06(0.00) 0.35(0.03) 0.07(0.01) 0.88(0.02)  0.05(0.00) 0.04(0.00)
Scene 0.08(0.01)  0.08(0.01) 0.04(0.01) 0.09(0.01) 0.08(0.01) 0.49(0.01) 0.07(0.00) 0.41(0.04)  0.08(0.01) 0.08(0.01)
Yeast 0.17(0.01)  0.34(0.00) 0.13(0.01) 0.21(0.00) 0.16(0.00) 0.30(0.02) 0.18(0.01) 0.23(0.03)  0.17(0.01) 0.16(0.01)

Tabela 4.13: Resultados de (RL): Classificadores vs. ML TKSC-FS
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Figura 4.9: Diagrama de barras de (RL): Classificadores vs. ML
TKSC-FS

Analise Comparativa de RL Com base na Tabela 4.13 e na Figura 4.9, que
comparam os valores de RL entre o modelo ML-TSKC FS e outros modelos de

referéncia da literatura, podemos chegar as seguintes conclusoes:
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e« Desempenho Superior e Consistente em Diversos Conjuntos de Da-
dos: O ML-TSKC FS apresentou valores de RL baixos em conjuntos como
Bibtex, Birds e Mirflickr, e manteve resultados equivalentes em Corell6kl,
Rcvisl e Revis2. Esse desempenho destaca a capacidade do modelo em orde-
nar corretamente os rétulos mais relevantes em tarefas de classificagdo multi-
rétulo, evidenciando sua eficiéncia em cendrios onde a priorizagdo precisa dos

rotulos é essencial.

e Consisténcia em Conjuntos de Dados Mais Complexos: Em conjuntos
como CAL500, Emotions, Flags, Image, Scene e Yeast, os modelos HNOML
e MLSF alcancaram desempenho superior na métrica de RL. Esse resultado
é esperado, pois o HNOML foi projetado para lidar com ruidos tanto nas
caracteristicas quanto nos rétulos, enquanto o MLSF adota uma sele¢do de
caracteristicas que foca nas mais relevantes para cada conjunto de rotulos es-
pecificos. Essas capacidades permitem que esses modelos mantenham uma
ordenac¢do mais precisa dos rétulos, reduzindo a penalizacdo na métrica RL.
Ainda assim, o ML-TSKC FS apresentou resultados competitivos nesses con-

juntos, demonstrando robustez mesmo em cenarios desafiadores.

Os resultados indicam que o ML-TSKC F'S é eficaz em priorizar e ordenar rétulos
relevantes em cerca de metade dos conjuntos testados e mantém desempenho com-
petitivo nos demais, quando comparado a métodos mais complexos da literatura.
Sua performance consistente e robusta em diferentes conjuntos de dados reforca
sua viabilidade como solucio para tarefas de classificagdo multi-rétulo, sendo uma

alternativa pratica e interpretavel para esses cenarios.

Dataset ML-kNN HNOML MLSF cc BR C2AE BP-MLL JBNN ML-TSK FS ML-TSKC FS
Bibtex 0.34(0.01)  0.13(0.00) 0.35(0.02) 0.18(0.00) 0.16(0.00) 0.56(0.01) 0.14(0.02) 0.61(0.00)  0.12(0.01) 0.12(0.00)
Birds 0.19(0.01)  0.12(0.03) 0.17(0.05) 0.13(0.01) 0.13(0.01) 0.22(0.03) 0.13(0.02) 0.23(0.04)  0.11(0.03) 0.09(0.03)
Cal500 0.75(0.01)  0.77(0.06) 0.76(0.03) 0.89(0.02) 0.79(0.01) 0.79(0.08) 0.76(0.02) 0.91(0.01)  0.73(0.01) 0.72(0.02)
Corel16kl 0.33(0.00) 0.31(0.00) 0.39(0.02) 0.33(0.01) 0.31(0.01) 0.53(0.03) 0.30(0.01) 0.71(0.00)  0.29(0.00) 0.27(0.01)
Emotions  0.38(0.02)  0.30(0.02) 0.33(0.03) 0.31(0.03) 0.30(0.03) 0.32(0.03) 0.37(0.01) 0.20(0.03)  0.28(0.03) 0.28(0.01)
Flags 0.56(0.02)  0.54(0.03) 0.54(0.04) 0.56(0.03) 0.55(0.02) 0.54(0.02) 0.48(0.04) 0.53(0.03)  0.52(0.01) 0.53(0.03)
Tmage 0.23(0.02)  0.20(0.02) 0.24(0.01) 0.20(0.03) 0.19(0.02) 0.24(0.03) 0.21(0.02) 0.17(0.04)  0.18(0.02) 0.19(0.02)
Mirflickr  0.44(0.00)  0.44(0.00) 0.45(0.00) 0.52(0.01) 0.62(0.04) 0.46(0.02) 0.39(0.00) 0.60(0.01)  0.42(0.00) 0.42(0.01)
Revlsl 0.20(0.00) 0.11(0.00) 0.24(0.04) 0.17(0.01) 0.14(0.01) 0.50(0.02) 0.15(0.01) 0.65(0.01)  0.11(0.00) 0.11(0.01)
Revls2 0.19(0.01)  0.11(0.00) 0.19(0.01) 0.16(0.01) 0.14(0.01) 0.53(0.04) 0.14(0.01) 0.62(0.01)  0.12(0.01) 0.10(0.01)
Scene 0.08(0.01)  0.08(0.01) 0.08(0.01) 0.09(0.01) 0.08(0.01) 0.26(0.01) 0.09(0.00) 0.14(0.03)  0.08(0.01) 0.08(0.01)
Yeast 0.45(0.02)  0.62(0.01) 0.48(0.03) 0.51(0.02) 0.44(0.01) 0.47(0.03) 0.47(0.01) 0.48(0.05)  0.46(0.01) 0.45(0.01)

Tabela 4.14: Resultados de (CV): Classificadores vs. ML TKSC-FS
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Figura 4.10: Diagrama de barras de (CV): Classificadores vs. ML
TKSC-FS

Anaélise Comparativa de CV Com base na Tabela 4.14 e na Figura 4.10, que
comparam os valores de CV entre o modelo ML-TSKC FS e outros modelos de

referéncia da literatura, podemos chegar as seguintes conclusoes:

¢ Desempenho Superior e Consistente em Diversos Conjuntos de Da-
dos: O ML-TSKC FS apresentou valores de CV baixos em conjuntos como
Birds, Cal500, Corell16k1 e Rcvls2, e manteve resultados equivalentes em Bib-
texr, Rcvisl e Scene. Esse desempenho indica que o ML-TSKC FS é capaz
de identificar os rétulos mais relevantes em profundidade minima, o que é
fundamental para aplicagdes em que a ordenacgao correta dos rétulos impacta

diretamente a utilidade das previsoes.

e Competicao com Modelos de Rede Neural: Em varios casos, o ML-
TSKC FS teve um desempenho comparavel ou superior aos modelos baseados
em redes neurais profundas, como o BP-MLL e o JBNN. Esses modelos sao
geralmente projetados para capturar a complexidade e interdependéncia en-
tre rétulos, mas o ML-TSKC FS consegue resultados competitivos com uma
abordagem mais simples e interpretavel. Essa caracteristica faz do ML-TSKC
FS uma alternativa interessante para tarefas que requerem um balanceamento

entre eficacia e interpretabilidade.

e Consisténcia em Cenarios de Menor Complexidade: Nos conjuntos de
dados com menor densidade de rétulos, como Scene e Yeast, o ML-TSKC FS
ainda mantém desempenho competitivo, com valores de Cobertura semelhan-
tes ao modelo BR. Isso demonstra que o modelo é adaptavel a diferentes niveis
de complexidade, mantendo a eficacia em contextos variados sem perda de

performance significativa.

Em resumo, os resultados para a métrica de CV mostram que o ML-TSKC FS
é eficiente na ordenacédo de rétulos e na priorizacao dos rotulos mais relevantes

em metade dos conjuntos testados, mantendo desempenho competitivo nos



102 Capitulo 4. METODOLOGIA EXPERIMENTAL

demais. Sua consisténcia e robustez, aliadas a facilidade de interpretagao,
tornam o ML-TSKC FS uma alternativa pratica e eficaz para problemas de
classificacdo multi-rétulo em comparagdo com métodos mais complexos da

literatura.

Concluindo, o ML-TSKC FS se mostrou uma alternativa eficiente e interpretavel,
com desempenho competitivo ou superior a muitos modelos da literatura, incluindo
redes neurais profundas. Sua abordagem baseada na Integral de Choquet permite
capturar bem as interagoes entre rotulos, resultando em uma classificagdo precisa
e com menos erros, tornando-o uma escolha promissora para diversas aplicacoes de

classificacdo multi-rétulo.

Estudo comparativo estatistico entre o ML-TSKC FS e Modelos de
Referéncia da Literatura

Nesta secao, fizemos um estudo comparativo para avaliar a performance do ML-
TSKC F'S em relagdo aos principais modelos da literatura para classificagdo multi-
rotulo. Usamos o teste de Friedman para ver se havia diferencas significativas
entre os modelos, e depois aplicamos o teste pés-hoc de Bonferroni-Dunn para

comparacoes detalhadas entre pares de modelos.

e Aplicagdo do Teste de Friedman: Para verificar se havia diferencas sig-
nificativas entre o desempenho do ML-TSKC FS e dos modelos de referéncia,
aplicamos o teste de Friedman em cada métrica de avaliagdo: Average Precision
(AP), Hamming Loss (HL), Ranking Loss (RL) e Coverage (CV).

¢ Resultados do Teste de Friedman

Os resultados do teste de Friedman para cada métrica estdo na Tabela 4.15.
Observamos que para todas as métricas o valor p foi menor que 0.05, o que
significa que podemos rejeitar a hipotese nula e concluir que ha diferencas

significativas entre os modelos.

Métrica Estatistica de Friedman Valor p
Average Precision (AP) 21.27 < 0.001
Hamming Loss (HL) 11.78 < 0.001
Ranking Loss (RL) 16.27 < 0.001
Coverage (CV) 9.86 < 0.001

Tabela 4.15: Resultados do Teste de Friedman para cada métrica de
avaliagao

e Analise Post-hoc Bonferroni-Dunn: Com a confirmaciao de que existem

diferencas significativas, realizamos uma anélise mais detalhada usando o teste
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pés-hoc de Bonferroni-Dunn. Este teste ajuda a identificar quais modelos tém

desempenho significativamente inferior ao ML-TSKC FS.

o Diagrama de Diferencas Criticas (CD)

O (CD) é usado para representar graficamente a comparacao do desempenho
de diferentes modelos em relagdo a uma métrica especifica, com base no teste
estatistico pés-hoc Bonferroni-Dunn. Este diagrama oferece uma visao clara
e intuitiva das relacdes entre os modelos, destacando aqueles que apresentam

diferencas estatisticamente significativas.

No diagrama, cada modelo é representado por uma linha horizontal, e suas
posigdes relativas refletem as classificagoes médias (rankings) obtidas para a
métrica analisada. As principais caracteristicas do diagrama sdo descritas a

seguir:

— Classificacdo Média (Ranking):

* Os modelos sao dispostos de acordo com suas classificacbes médias,

calculadas com base nos resultados da métrica em analise.
— Barra de Diferencas Criticas (CD):

* A barra horizontal vermelha conecta os modelos cujas diferencas de
desempenho nao séo estatisticamente significativas, de acordo com o

intervalo critico calculado.
« O valor da Diferenga Critica (CD), indicado no topo do diagrama,
é obtido utilizando a Eq.(4.7). Ele define o limite acima do qual as

diferencas nos rankings sao consideradas significativas.
— Linhas de Conexao:

* Linhas conectam modelos cujas diferencas estdo dentro do intervalo
critico de (CD), indicando desempenhos estatisticamente semelhan-

tes.

x A auséncia de conexdo entre dois modelos implica diferencas estatis-

ticamente significativas entre eles.

A seguir, apresentamos os diagramas de Diferengas Criticas para as diferen-
tes métricas analisadas, acompanhados de suas respectivas conclusoes. Essa
abordagem grafica complementa os testes estatisticos numéricos previamente
realizados, proporcionando uma interpretacao visual e acessivel das diferengas

entre os modelos.

o Diagrama de Diferencas Criticas (CD) para a métrica AP
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CD =3.138

ML-TSKC FS — C2AE
ML-TSK FS JBNN
BR —M8Mm ———— -————— MLSF
BP-MLL ML-KNN
HNOML cC

Figura 4.11: Diagrama de CD para a métrica AP: ML-TSKC FS vs
Modelos da Literatura.

e Conclusoes para a Métrica AP

Com base no diagrama de diferengas criticas para a métrica AP, tiramos as
seguintes conclusoes sobre o desempenho do modelo ML-TSKC FS em com-

parac¢do com os principais modelos da literatura.

— Desempenho do ML-TSKC FS: O ML-TSKC FS teve a melhor clas-

sificacdo média, indicando que seu desempenho foi consistentemente su-
perior aos outros modelos. Isso reforca que a inclusdo da Integral de
Choquet ajuda a capturar melhor as interagdes complexas entre os rétu-

los.

Comparacao com Modelos de Referéncia: O ML-TSKC FS mos-
trou uma diferenca significativa em relacdo a modelos como ML-kNN |
HNOML , MLSF, CC, C2AE, BP-MLL e JBNN . Esse diferencial
sugere que a metodologia neuro-fuzzy com a Integral de Choquet permite

capturar melhor as interdependéncias entre rétulos.

Comparacdo com o ML-TSK FS e Modelos Fuzzy: A diferenga
entre o ML-TSKC FS , o ML-TSK FS e o BR foi menor, indicando que o
uso da Integral de Choquet adiciona melhorias graduais. Essa vantagem
é especialmente relevante para dados com interdependéncias complexas

entre rotulos.

Em resumo para a métrica AP o diagrama de diferencas criticas confirma que
o ML-TSKC FS nao s6 supera os modelos tradicionais, mas também apre-
senta uma melhoria incremental em relagao ao ML-TSK FS. Esses resultados
indicam que a aplicacdo da Integral de Choquet é uma solucdo eficaz para

melhorar a precisao na classificacdo multi-rétulo.

o Diagrama de Diferencas Criticas (CD) para a métrica HL
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CD = 3.138

ML-TSKC FS
MLTSKFS ——M8¥ | BP-MLL
MLSF JBNN
BR HNOML
ML-KNN cc

Figura 4.12: Diagrama de Diferencas Criticas (CD) para a métrica
HL: ML-TSKC FS vs Modelos da Literatura.

¢ Conclusoes do Estudo Comparativo com Base na Métrica de HL

A andlise do diagrama de diferengas criticas (CD) para a métrica HL mostra
o desempenho do modelo ML-TSKC FS em comparacao com outros modelos

da literatura.

— Desempenho do ML-TSKC FS: O ML-TSKC FS teve a melhor clas-
sificacdo média, indicando que seu desempenho foi consistentemente su-
perior aos outros modelos. Isso refor¢ca que a inclusdo da Integral de

Choquet ajuda a melhorar a precisao e a confiabilidade.

— Comparacao com Modelos de Referéncia: O ML-TSKC FS mostrou
uma diferenca significativa em relagdo a modelos como HNOML , C2AFE
BP-MLL e JBNN . Esse diferencial sugere que a metodologia neuro-fuzzy
com a Integral de Choquet permite capturar melhor as interdependéncias

entre rotulos.

— Comparaciao com o ML-TSK FS e Modelos Fuzzy: A diferenca
entre o ML-TSKC FS e os classificadores ML-TSK FS , ML-kNN |,

MLSF, CC,e BR foi menor, indicando que nao a diferenca significativa.

A anélise da métrica HL confirma que o ML-TSKC FS oferece um desempenho
superior e consistente, especialmente em comparac¢ao com modelos tradicionais
e redes neurais. Isso o torna uma escolha sélida para tarefas de classificagao

multi-rétulo, onde é essencial controlar erros e manter a precisao.

o Diagrama de Diferencas Criticas (CD) para a métrica RL
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CD = 3.138

ML-TSKC FS —— JBNN
ML-TSK FS C2AE
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HNOML —m ————————— l—— CC
BP-MLL BR

Figura 4.13: Diagrama de Diferencas Criticas (CD) para a métrica
RL: ML-TSKC FS vs Modelos da Literatura.

e Conclusées do Estudo Comparativo com Base na Métrica de RL

O diagrama de diferengas criticas (CD) para a métrica RL mostra o desempe-
nho do modelo ML-TSKC FS em comparacao com outros modelos da litera-

tura.

— Desempenho do ML-TSKC FS: O ML-TSKC FS teve a melhor clas-
sificacdo média, indicando que seu desempenho foi consistentemente su-

perior aos outros modelos.

— Comparagado com Modelos de Referéncia: O ML-TSKC FS mostrou
uma diferenca significativa em relacdo a modelos como CC', ML-kENN
, C2AE e JBNN . Esse diferencial sugere que a metodologia neuro-
fuzzy com a Integral de Choquet permite ordenar corretamente os rétulos

relevantes.

— Comparacao com o ML-TSK FS e Modelos Fuzzy: A diferenca en-
tre o ML-TSKC FS e os classificadores ML-TSK FS, MLSF, HNOML
, BP-MLL , e BR foi menor, indicando que o ganho nao foi suficiente

para obter uma diferenca significativa.

O diagrama de diferencas criticas para a métrica RL reforca a posicdo do
ML-TSKC FS como uma abordagem eficaz para a classificagdo multi-rétulo e
reforga sua viabilidade como uma solucdo alternativa pratica e interpretavel

para esses cenarios.

o Diagrama de Diferencas Criticas (CD) para a métrica CV
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CD = 3.138

ML-TSKC FS C2AE
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BR ML-KNN

Figura 4.14: Diagrama de Diferencas Criticas (CD) para a métrica
CV: ML-TSKC FS vs Modelos da Literatura.

e Conclusées do Estudo Comparativo com Base na Métrica de CV

A anélise do diagrama de diferengas criticas (CD) para a métrica de CV mostra
o desempenho do modelo ML-TSKC FS em comparacao com outros modelos

da literatura.

— Desempenho do ML-TSKC FS: O ML-TSKC FS teve a melhor clas-
sificacdo média, indicando que seu desempenho foi consistentemente su-
perior aos outros modelos. Isso reforca que a inclusdo da Integral de
Choquet ajuda a minimizar o esfor¢o para alcancar os rotulos corretos na

lista.

— Comparacao com Modelos de Referéncia: O ML-TSKC FS mos-
trou uma diferenca significativa em relagdo a modelos como ML-kNN |
MLSF , CC, JBNN e C2AE . Esse diferencial sugere que a metodo-
logia neuro-fuzzy com a Integral de Choquet permite capturar melhor as

interdependéncias entre rétulos.

— Comparaciao com o ML-TSK FS e Modelos Fuzzy: A diferenca
entre o ML-TSKC FS e os classificadores ML-TSK FS , HNOML |,

BP-MLL e BR foi menor, indicando que nao a diferencga significativa.

O diagrama de diferencas criticas para a métrica CV reforca a posigdo do ML-
TSKC FS como uma solugao para classificagdo multi-rétulo em cenarios onde é

importante a otimizacio da profundidade de cobertura dos rotulos é relevante

4.2.4 Conclusao do capitulo

Neste capitulo, foi analisado o desempenho do modelo ML-TSKC-FS em conjuntos
de dados de classificacdo multi-rétulo, destacando sua versatilidade e eficicia.

Na primeira parte do estudo, os resultados dos testes estatisticos de Wilcoxon
indicaram que o modelo ML-TSKC-FS, ao utilizar a Integral de Choquet nos ante-
cedentes das regras, superou o modelo ML-TSK FS em varias métricas, confirmando

que as melhorias obtidas sao estatisticamente significativas.
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Na segunda parte, que comparou o ML-TSKC-FS com modelos consolidados
da literatura, os testes de Friedman e as Diferencas Criticas de Bonferroni-Dunn
mostraram que o ML-TSKC-FS obteve a melhor classificacdo média, indicando um
desempenho consistentemente superior em relagao a outros modelos. Embora essas
melhorias ndo tenham sido suficientes para superar estatisticamente todos os mé-
todos, o modelo proposto superou varios deles, incluindo redes neurais profundas e
métodos especializados.

Esses resultados comprovam a robustez e a eficicia do modelo ML-TSKC-FS,
posicionando-o como uma abordagem promissora na area de classificagdo multi-
rétulo neuro-fuzzy. A inclusdo da Integral de Choquet mostrou-se fundamental
para aprimorar a capacidade do modelo em capturar as interages entre atributos
e rotulos, resultando em um desempenho estatisticamente superior em relagdo a
diversos modelos. Essa melhoria torna o ML-TSKC-FS uma alternativa vantajosa

para aplicacgbes praticas que exigem precisao e interpretabilidade.



Capitulo 5

CONCLUSAO

A principal contribuicao deste trabalho foi a introdugdo do modelo ML-TSKC FS,
um sistema neuro-fuzzy desenvolvido para a classificagdo multi-rétulo, que se des-
taca por utilizar a integral de Choquet na agregacao de informacdes para a ativagao
das regras no sistema de inferéncia. Essa abordagem oferece uma solucao flexivel
e robusta para a tarefa de classificagdo multi-rétulo, especialmente ao lidar com a
imprecisao, ambiguidade e incerteza presentes nos dados. Ao capturar as interagoes
entre diferentes atributos, o modelo ML-TSKC FS melhora a precisdo e a consistén-

cia dos resultados.

Resposta a pergunta de pesquisa

Com base nos resultados obtidos, podemos responder a nossa pergunta de pes-
quisa.

A incluséo da Integral Discreta de Choquet na agregacio de atributos para cal-
cular a ativagdo das regras em um modelo de classificacao multi-rétulo neuro-fuzzy
pode levar a uma melhoria no desempenho do modelo original?

Sim, os resultados apresentados neste trabalho confirmam que a aplicagdo da
Integral Discreta de Choquet na agregagao de atributos melhora o desempenho do
modelo em sistemas de classificacio multi-rétulo neuro-fuzzy. A integracido dessa
técnica aprimorou a capacidade do modelo proposto ML-TSKC-FS de capturar as
interagoes complexas entre atributos, proporcionando resultados estatisticamente

superiores em relacdo ao modelo original. Esse ganho de desempenho posiciona o

109
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modelo como uma abordagem promissora e vantajosa para aplicagoes praticas que

exigem precisao e interpretabilidade.

5.1 Contribui¢oes e Resultados Principais
Os principais resultados e contribuicoes deste trabalho podem ser resumidos como:

« Flexibilidade: A inclusido da integral de Choquet nos antecedentes das regras
oferece uma forma mais adaptavel de agregar informagoes, captando nuances

que métodos tradicionais nao conseguem abordar.

e« Modelagem de Interagoes Complexas: A inclusido de medidas fuzzy, per-
mite uma andlise detalhada da sinergia entre atributos, essencial para repre-
sentar adequadamente a complexidade dos dados de entrada e melhorar a

consisténcia e precisdo dos resultados.

¢ Desempenho Superior em Classificagao Multi-Rétulo: O modelo ML-
TSKC FS demonstrou desempenho superior em termos de precisao e robustez,
adaptando-se bem a diferentes bases de dados com multiplos rétulos e exibindo

uma menor taxa de erro quando comparado a modelos tradicionais.

e Maior Adaptabilidade: O modelo pode ajustar dinamicamente a influéncia
de cada atributo com base em sua importancia combinada com outros. Isso é
particularmente benéfico em problemas de classificagdo multi-rétulo, onde as

interagoes frequentemente exibem relagbes complexas.

e Maior Precisdao: Ao considerar as relagoes intrinsecas entre os atributos,
a integral de Choquet pode levar a previsdes mais precisas em tarefas de-
safiadoras de classificacdo multi-rotulo, onde multiplas saidas sdo igualmente

importantes e as interacoes entre os atributos desempenham um papel crucial.

Essas vantagens se refletem em duas areas principais de contribui¢do primeiro,
no aumento da precisao estatistica do modelo ao competir em diferentes métricas e,

segundo, na capacidade de integracdo em sistemas complexos de inferéncia fuzzy.

5.2 Limitacoes do Trabalho

Apesar dos resultados promissores, este trabalho possui algumas limitacées que de-

vem ser consideradas:

o Dependéncia da Complexidade Computacional: A utilizacao da integral
de Choquet, apesar de proporcionar ganhos em precisao, exige maior poder

computacional em comparacao com operadores tradicionais.
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e Necessidade de Ajuste dos Pardmetros Fuzzy: A configuracido dos pa-
rametros fuzzy, incluindo pesos da integral de Choquet, requer um ajuste cui-

dadoso.

e Escalabilidade para Conjuntos de Dados Extensos: Embora o modelo
tenha se mostrado eficiente em conjuntos de dados de tamanho médio, a sua
aplicacado em dados extremamente volumosos pode ser limitada pois o custo
de execucao e o custo de equipamento necessario para executar o codigo au-

mentaria em grao medida.

5.3 Trabalhos Futuros

Com base nas limitagoes e descobertas deste trabalho, as pesquisas futuras se con-

centrarao em areas-chave.

e O uso de outras medidas fuzzy no modelo poderia melhorar seu desempenho.

e Generalizac¢des da Integral de Choquet podem oferecer um processo de agrega-
¢ao mais refinado, aprimorando ainda mais a precisao da classificacdo multi-

rotulo.

o Estudaremos adaptagoes do modelo para o caso de conjuntos de dados semi-

rotulados (como, por exemplo, em [Gull e Aguilar 2024]).

¢ Automatizagdo da Configuracdo de Parametros Fuzzy, desenvolver algoritmos
de aprendizado de maquina que ajustem automaticamente os parametros fuzzy,

visando melhorar a adaptabilidade do modelo.

e Ampliar o escopo do modelo em diferentes bases de dados e métricas, inves-
tigando como a adaptacdo da integral de Choquet impacta novas dreas de

classificacao.

o Aplicagoes Praticas da Integral de Choquet, validar o modelo em cenérios reais,
como previsdo de demanda em mercados dindmicos ou diagnoéstico médico,

para testar a eficdcia em ambientes praticos.
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Apeéndice A: Cdédigo Utilizado

no Estudo

Este apéndice apresenta o c6digo utilizado no estudo, desenvolvido em Matlab como
uma modificagdo do trabalho de [Lou et al. 2021]. A implementagdo incorpora
a Integral de Choquet e explora diferentes medidas fuzzy, permitindo modelar de
maneira mais robusta as interacdes complexas entre atributos em sistemas multi-

rétulo.

Estrutura do Cédigo

A seguir, detalhamos a estrutura do cédigo, destacando as principais etapas e fun-
cionalidades.

1. Configuracao Inicial de Paradmetros

O cdbdigo inicia configurando os pardmetros de busca (alpha, beta, gamma, k, h),
que sdo fundamentais para o processo de otimizacdo do modelo. Esses pardmetros
definem o espaco de busca para os hiperparametros e influenciam diretamente os

resultados obtidos.

1 function [ BestParameter , BestResult ] =
ML_TSKFS_adaptive_validate (data, target, oldOptmParameter,
TSKoptions)

V)

optmParameter oldOptmParameter;

alpha_searchrange oldOptmParameter.alpha_searchrange;

1 beta_searchrange oldOptmParameter.beta_searchrange;

5 gamma_searchrange oldOptmParameter.gamma_searchrange;

7 k_searchrange = TSKoptions.k_searchrange;
s h_searchrange = TSKoptions.h_searchrange;
9 q_s = 1;

11 total = length(alpha_searchrange) * length(beta_searchrange) x*
12 length (gamma_searchrange) * length(k_searchrange) * length

(h_searchrange);
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2.

Busca Otimizada por Hiperparametros

Nesta etapa, o cédigo realiza uma busca exaustiva pelos melhores hiperparametros.

Essa busca cobre todas as combinagoes possiveis dos valores definidos, utilizando

lacos aninhados. A cada iteracdo, o modelo é avaliado, e os resultados sao registrados

para andlise.

index = 1;
parameter_cell = zeros(total, 35);
ii = 1;

for p = 1:length(k_searchrange)
for q = 1:length(h_searchrange)
TSKoptions.k = k_searchrange(p);
TSKoptions.h = h_searchrange(q);
[v, bl = gene_ante_fcm(data, TSKoptiomns);
[G_data] = calc_x_gf(data, v, b);

train_data = G_data;
num_train = size(train_data, 1);
randorder = randperm(num_train);

BestResult = zeros (15, 1);

num_cv = 5;

for i = 1:length(alpha_searchrange)
for j = 1:length(beta_searchrange)
for k = 1:length(gamma_searchrange)
fprintf (’\n- %d/%d: TSK_k = %f, TSK_h = %f,
alpha = %f, beta = %f, gamma = %f’,
index, total, k_searchrange(p),
h_searchrange(q),
alpha_searchrange (i), beta_searchrange
(j), gamma_searchrange (k));

index = index + 1;

3.

Funcao da Integral de Choquet

Inclui-se a func¢ao de calculo da Integral de Choquet, utilizada como parte do modelo.

function [x_g] = calc_x_gf(x,v,b)
n_examples = size(x,1);
x_e = [x,ones(n_examples,1)];

[k,d] = size(v);

B = [1;
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p = 23

q = 2;

for i=1:k
vl = repmat(v(i,:),n_examples,1);
bb = repmat(b(i,:),n_examples,1);
v2 = exp(-(x-v1).72./(2*%bb."2));

v3 = v2-v2;
[A,I]=sort(v2,2);

q_t = 4;
switch(q_t)
case 1
wt(:,1) = exp(-sum((x-v1).72./(2%bb) ,2));
case 2 %hhhbhhhhhhhhhhhhh ot hhhhhthhthhhhhhsh %
wt(:,i) = min(v2,[],2);
case 3 hhhhhhhhhhhhthhhhhh ot hhhhhhhthhshhhshmh
wt(:,i) = max(v2,[],2);

case & %hhhhhhhbhhhhhhhhhhhhhhhhthththhhh’h medida uniforme
for j=1:d
if j ==
v3(:,j) = AC:,§);

end
if j > 1
v3(:,3) = (AC:,3) - AC:,j-1)).x(d-j+1)/d;
end
end

wt(:,i) = sum(v3,2);
case 5 %hhhtbhhhhhhhhhhhhhhthhthhhhthhhhrh’h medida relativa
for j = 1:d
if j ==
v3(:, j) = AC:, j);
B(j,k) = 1;

end

if § > 1
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57 PP = I;

58 QQ = IC:, j:d);

59

60 B(j,k) = sum(QQ(j, :)) / sum(PP(j, :));

61 v3(:, j) = (AC:, j) - AC:, J - 1)) * B(j,k);

62 end

63 end

64 %display (B);

65 wt(:, i) = sum(v3, 2);

66 case 6 Lhhhhhhhhhhhhhhhhhhhhhhhhthhhhhhhh’s medida produto

67 for j = 1:d

68 if j == 1

69 v3(:, j) = AC:, j);

70

71 end

72

73 if j > 1

74

75 QQ = I(:, 1:j-1);

76

77 v3(:, j) = (AC:, 3) - AC:, j - 1))./prod(QQ,2)

78 end

79 end

80

81 wt(:, 1) = sum(v3, 2);

82 case T hhhhbhhhhhhhhhhhhhhhhhhhhhhthhhhhh%: medida potencia

83 for j=1:d

84 if j == 1

85 v3(:,3) = AC:,3);

86 end

87 if j > 1

88 v3(:,3) = (AC:,3) - A(:,j-1)).*x((d-j+1)/d)"q;

89 end

90 end

91 wt(:,i) = sum(v3,2);

92 case 8 %hhhhhhhhbhhhhhhhhhhhhhhhhhhhhhhthh% medida
ponderada

93 %QQ = rand(size(A));

94 QQ = A;

95 SQQ=sum(QQ,2) ;

96 QQQ=QQ./sQQ;

97 for j=1:d

98 if j ==

99 v3(:,3) = AC:,3);

00 end

01 if j > 1

02 v3(:,3) = (AC:,3) - AC:,j-1)) .xsum(QQQ(:,j:4d)

,2) + eps;
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end
end

wt(:,i) = sum(v3,2);

end

end

wt2 = sum(wt,2);

% To avoid the situation that zeros are exist in the matrix wt2
ss = wt2==0;

wt2(ss,:) = eps;

wt = wt./repmat(wt2,1,k);

x_g = [1;
for i=1:k
wtl = wt(:,1);
wt2 = repmat (wtl,1,d+1);
x_g = [x_g,x_e.*wt2];
end
end

4.

Avaliacao de Desempenho com Validacao Cruzada

O desempenho do modelo é avaliado utilizando validagdo cruzada em k-dobras. O

codigo calcula métricas especificas para cada combinacao de parametros e seleciona

os melhores com base nos critérios estabelecidos.

1

cv_index = 1;

TempResult = zeros(num_cv, 15);

for cv = 1:num_cv

[cv_train_data, cv_train_target, cv_test_data, cv_test_target]

generateCVSet (train_data, target’, randorder, cv, num_cv);
[model _LLSF] = ML_TSKFS(cv_train_data, cv_train_target,

optmParameter) ;
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8 Outputs = (cv_test_data * model_ LLSF)’;

9 Pre_Labels = double(round(Qutputs) >= 1);

10 TempResult (cv_index, :) = EvaluationAll (Pre_Labels,
cv_test_target’)’;

11 cv_index = cv_index + 1;

12 end

14 Result = mean(TempResult)’;
15 STD = std(TempResult);

Outputs,

5. Resultados e Visualizagao

Por fim, o c6digo apresenta os resultados em gréaficos, permitindo uma anélise visual

das métricas de desempenho e da convergéncia dos parametros.

1 figure;

> plot(rx(q, :), ryl(q, :), rx(q, :), ry2(q, :));
3 ylim([0.0, 11);

1 xlabel(Itera es);

5 ylabel(M tricas de Desempenho);

6 grid on;

Conclusao

A estrutura do codigo foi desenvolvida para explorar os beneficios da Integral de

Choquet em sistemas fuzzy multi-rétulo. Utilizando loops aninhados e avaliagoes

sistematicas, o cddigo garante um ajuste fino dos parametros, resultando em um

modelo robusto e eficiente. As técnicas implementadas permitem modelar interagoes

complexas entre atributos, com base nas medidas fuzzy abordadas neste trabalho.




Apéndice B: Conjunto de Dados

Usados para Treinamento

Neste anexo, sao apresentados exemplos dos atributos e rétulos dos primeiros quatro
conjuntos de dados utilizados para o treinamento e para a andlise comparativa entre

o modelo proposto, ML TSKC-FS, e os modelos da literatura.

Conjunto de Dados BibTeX

O conjunto de dados BibTeX ¢é amplamente utilizado em tarefas de aprendizado
de maquina multi-rétulo. Neste apéndice, sdo apresentadas informagoes detalhadas

sobre sua estrutura e formato.

Estrutura do Conjunto de Dados

O conjunto de dados BibTeX é composto por 7.395 instancias, 1.836 atribu-
tos (termos extraidos dos documentos) e 159 rétulos (categorias). A Tabela 5.1

apresenta uma pequena amostra do conjunto de dados.

ID do Termos (Atributos) Rétulos (Categorias)
Documento
1 learning, neural, network, model AT, Machine Learning
2 retrieval, information, database Information Retrieval, Databases
3 classification, fuzzy, logic Fuzzy Systems, Al
4 optimization, genetic, algorithm Optimization, Genetic Algorithms
) data, mining, patterns Data Mining, Big Data

Tabela 5.1: Exemplo da Estrutura do Conjunto de Dados BibTeX

Formato Real do Conjunto de Dados

Os dados no BibTeX sdo armazenados no formato esparso, onde cada instancia é

representada por vetores com os seguintes elementos:

1. Atributos: Representados como uma matriz esparsa com valores 0 ou 1,

indicando a auséncia ou presencga de termos no documento. Por exemplo:
0, 1, 0, ..., 1, 0, 11 // Vetor de tamanho 1836.
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2. Roétulos: Uma matriz bindria que indica se o documento pertence a cada uma

das 159 categorias. Exemplo:

[1, 0, O, ..., 1, 0, 0] // Vetor de tamanho 159.

Formato Original (Texto Bruto)

Caso o arquivo seja visualizado diretamente, o contetido do arquivo pode ser apre-

sentado no seguinte formato:

ID: 1
Features: {learning: 1, neural: 1, network: 1, model: 1, ...}
Labels: {AI: 1, Machine Learning: 1, ...}

Conjunto de Dados Birds

O conjunto de dados Birds é utilizado em tarefas de aprendizado de maquina multi-
rotulo, especialmente no reconhecimento e categorizacao de cantos de aves em gra-

vagoes de audio. Este apéndice detalha a estrutura e o formato do conjunto de

dados.

Estrutura do Conjunto de Dados

O conjunto de dados Birds contém 645 instancias, 260 atributos e 19 rétulos

(categorias de aves). A Tabela 5.2 apresenta uma amostra dos dados.

ID do Som Caracteristicas (Atributos) Roétulos (Categorias de Aves)

1 freql, freq2, pitchl, pitch2 Sparrow, Thrush
2 freq2, freq3, pitch3, tempo Robin, Crow

3 freql, pitchl, tempo, volume Finch, Sparrow
4 freq4, pitch2, tempo, volume Warbler, Thrush
5 freql, freq3, pitchl, pitch4 Crow, Finch

Tabela 5.2: Exemplo da Estrutura do Conjunto de Dados Birds

Formato Real do Conjunto de Dados

Os dados no conjunto Birds sdo armazenados no formato de matriz, em que cada

linha representa uma instancia com suas caracteristicas e rétulos:

1. Atributos: Representam caracteristicas extraidas dos dudios, como frequén-

cias, pitch (tom), tempo e volume. Exemplo de vetor de atributos:
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(0.12, 0.35, 0.20, ..., 0.50]

O vetor tem dimensao 260.

2. Rétulos: Representam as espécies de aves detectadas na gravagdo. Cada

espécie é associada a um valor binario (0 ou 1). Exemplo de vetor de rétulos:

(1, 0, 0, ..., 1]

O vetor possui dimensao 19.

Formato Original (Texto Bruto)

Se o arquivo for visualizado diretamente, o conteido pode aparecer da seguinte

forma:

ID: 1

Features: {freql: 0.12, freq2: 0.35, pitchl: 0.20, pitch2: 0.50, ...}
Labels: {Sparrow: 1, Thrush: 1, Robin: O, Crow: 0, ...}

Conjunto de Dados CAL500

O conjunto de dados CALS500 ¢ utilizado para tarefas de aprendizado de maquina
multi-rétulo, com foco na anotacdo automatica de musicas. Este apéndice apresenta

detalhes sobre a estrutura e o formato deste conjunto de dados.

Estrutura do Conjunto de Dados

O conjunto de dados CAL500 é composto por 502 instancias (musicas), 68 atri-
butos extraidos das caracteristicas musicais e 174 rétulos (anotagoes de palavras-

chave relacionadas as musicas). A Tabela 5.3 apresenta uma pequena amostra.

ID da Musica Atributos (Caracteristicas) Rdtulos (Anotagées)

1 pitch, tempo, ritmo, harmonia  Happy, Upbeat, Instrumental
2 ritmo, volume, melodia Sad, Slow, Acoustic

3 tempo, pitch, percussao Energetic, Loud, Rock

4 harmonia, melodia, ritmo Calm, Mellow, Jazz

5 volume, pitch, tempo Instrumental, Classical, Soft

Tabela 5.3: Exemplo da Estrutura do Conjunto de Dados CAL500
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Formato Real do Conjunto de Dados

Os dados do CAL500 sdao organizados da seguinte forma:

1. Atributos: Representam caracteristicas extraidas das miusicas, como pitch

(tom), tempo, ritmo, harmonia, volume e percussdo. Exemplo de vetor de

atributos:

[0.23, 0.45, 0.67, ..., 0.12]

O vetor possui 68 dimensoes.

Rétulos: Sao palavras-chave anotadas manualmente que descrevem o con-
teido emocional, instrumental e de género das musicas. Exemplo de vetor de

rotulos:

[Happy, Upbeat, Instrumental]

Cada musica pode conter multiplos rétulos, totalizando 174 categorias pos-

siveis.

Formato Original (Texto Bruto)

O contetido original do arquivo pode ser representado no seguinte formato:

ID:

1

Features: {pitch: 0.23, tempo: 0.45, ritmo: 0.67, harmonia: 0.12, ...}

Labels: {Happy, Upbeat, Instrumentall}

Conjunto de Dados Corell6kl

O conjunto de dados Corell16k1 é amplamente utilizado em tarefas de aprendizado

de maquina multi-rétulo, com foco em recuperagao e classificagdo de imagens. Este

apéndice apresenta informacoes detalhadas sobre sua estrutura e caracteristicas.

Estrutura do Conjunto de Dados

O conjunto de dados Corel16k1 contém 13.766 instancias (imagens), 500 atribu-

tos extraidos das caracteristicas visuais e 153 rétulos (categorias). A Tabela 5.4

apresenta uma pequena amostra deste conjunto.
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ID da Imagem Atributos (Caracteristicas Visuais) Rétulos (Categorias)

1 cor, textura, borda Montanha, Paisagem
2 cor, formato, textura Animal, Savana

3 borda, cor, intensidade Urbano, Arquitetura
4 textura, cor, brilho Praia, Oceano

5 cor, formato, borda Flores, Jardim

Tabela 5.4: Exemplo da Estrutura do Conjunto de Dados Corel16k1

Formato Real do Conjunto de Dados

Os dados no conjunto Corell6kl sdo armazenados no formato matricial, onde cada

instancia representa as caracteristicas visuais de uma imagem.

1. Atributos: Representam caracteristicas extraidas das imagens, como cor,

textura, borda, intensidade e brilho. Exemplo de vetor de atributos:

(0.12, 0.35, 0.67, ..., 0.89]

O vetor possui dimensao 500.

2. Rétulos: Cada imagem pode estar associada a miltiplos rétulos que repre-

sentam as categorias visuais da imagem. Exemplo de vetor de rétulos:

[Montanha, Paisagem]

No total, existem 153 rétulos diferentes.

Formato Original (Texto Bruto)

O formato original dos dados pode ser apresentado da seguinte forma:

ID: 1
Features: {cor: 0.12, textura: 0.35, borda: 0.67, ...}

Labels: {Montanha, Paisagem}

Em conclusao, este apéndice apresenta uma descricdo mais detalhada dos quatro
primeiros conjuntos de dados, de acordo com a tabela apresentada no trabalho. Essa
descricdo complementa as informacoes fornecidas anteriormente, oferecendo maior
clareza sobre as caracteristicas dos dados utilizados no treinamento e na andlise

comparativa do modelo ML TSKC-FS em relacdo aos modelos da literatura.
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