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Resumo

A classificação multi-rótulo é uma tarefa fundamental no aprendizado de máquina,
pois permite que uma instância pertença a múltiplas categorias simultaneamente,
o que é essencial em diversos problemas reais, como o reconhecimento de imagens
em Engenharia e Ciências Médicas. Esse tipo de classificação possibilita uma repre-
sentação mais precisa e abrangente das relações complexas entre dados e categorias,
superando as limitações das classificações binária e multi-classe.

Esta dissertação apresenta o Sistema Fuzzy Multi-Rótulo Takagi-Sugeno-
Kang-Choquet (ML-TSKC FS), um modelo inovador de classificação multi-
rótulo que generaliza o Sistema Fuzzy Multi-Rótulo Takagi-Sugeno-Kang (ML-TSK
FS) ao incorporar a Integral de Choquet. O modelo proposto utiliza a integral
de Choquet, definida em termos de medidas fuzzy, para agregar informações no
cálculo da força de ativação nos antecedentes das regras, capturando interações
complexas entre atributos e a incerteza presente nos dados. Essa abordagem permite
um tratamento mais refinado da informação, tornando o modelo especialmente eficaz
em cenários onde os rótulos possuem dependências complexas.

Para avaliar o desempenho do ML-TSKC FS, exploramos a aplicação da integral
de Choquet com cinco medidas fuzzy distintas, realizando um estudo comparativo em
doze conjuntos de dados de classificação multi-rótulo. A metodologia inclui validação
cruzada e testes estatísticos para garantir a robustez dos resultados. Os resultados
mostram que o modelo ML-TSKC FS oferece melhorias significativas em termos de
precisão e capacidade de generalização, quando comparado ao modelo padrão ML-
TSK FS e a outros métodos de referência, incluindo algoritmos tradicionais, redes
neurais e sistemas fuzzy.

Concluímos que o uso da Integral de Choquet no processo de agregação aumenta
a robustez e a precisão do modelo ao lidar com incertezas e dependências complexas,
tornando o ML-TSKC FS uma alternativa promissora para problemas de classifica-
ção multi-rótulo em aplicações práticas.

Palavras-Chave: Multi-rótulo Classificação, Integral de Choquet, Medida Fuzzy,
Sistema de Inferência Neuro-Fuzzy, Sistema Fuzzy Multi-rótulo Takagi-Sugeno-Kang.
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Abstract

Multi-label classification is a fundamental task in machine learning, as it allows an
instance to belong to multiple categories simultaneously, which is essential in various
real-world problems, such as image recognition in Engineering and Medical Sciences.
This type of classification enables a more precise and comprehensive representation
of the complex relationships between data and categories, overcoming the limitations
of binary and multi-class classification.

This dissertation presents the Takagi-Sugeno-Kang-Choquet Multi-Label
Fuzzy System (ML-TSKC FS), an innovative multi-label classification model
that extends the Takagi-Sugeno-Kang Multi-Label Fuzzy System (ML-TSK FS) by
incorporating the Choquet Integral. The proposed model uses the Choquet inte-
gral, defined in terms of fuzzy measures, to aggregate information in the calculation
of activation strength in rule antecedents, capturing complex interactions between
attributes and the uncertainty present in the data. This approach enables a more
refined information processing, making the model especially effective in scenarios
where labels exhibit complex dependencies.

To evaluate the performance of ML-TSKC FS, we applied the Choquet integral
with five distinct fuzzy measures in a comparative study on twelve multi-label clas-
sification datasets. The methodology includes cross-validation and statistical tests
to ensure robust results. The results show that the ML-TSKC FS model provides
significant improvements in terms of accuracy and generalization capacity when com-
pared to the standard ML-TSK FS model and other reference methods, including
traditional algorithms, neural networks, and fuzzy systems.

We conclude that using the Choquet Integral in the aggregation process increases
the model’s robustness and accuracy in handling uncertainties and complex depen-
dencies, making ML-TSKC FS a promising alternative for multi-label classification
problems in practical applications.

Keywords: Multi-Label Classification, Choquet Integral, Fuzzy Measure, Neuro-
Fuzzy Inference System, Multi-Label Takagi-Sugeno-Kang Fuzzy System
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Capítulo 1

INTRODUÇÃO

No mundo atual, a quantidade de informação disponível é imensa e cresce de forma
exponencial. Para lidar e entender essa avalanche de dados, é crucial desenvol-
ver modelos de aprendizado de máquina eficientes e precisos. Uma técnica que tem
ganhado destaque nesse campo é a classificação multi-rótulo, que amplia as capa-
cidades das abordagens tradicionais de classificação, permitindo que uma instância
seja associada a múltiplas categorias simultaneamente. Por exemplo, um artigo de
notícias pode ser classificado como política, economia e “internacional” ao mesmo
tempo [Wei et al. 2022]. Isso é especialmente útil em tarefas como categorização de
textos e reconhecimento de imagens, onde os dados do mundo real muitas vezes não
podem ser limitados a uma única categoria.

Essa flexibilidade permite que os modelos lidem com a complexidade inerente
aos dados reais, superando as limitações das abordagens binárias ou multi-classes,
que atribuem cada instância a um único rótulo [Tsoumakas e Katakis 2007]. Além
disso, a classificação multi-rótulo considera as potenciais interações entre os rótulos.
Por exemplo, na medicina, um paciente pode apresentar sintomas que correspondem
a múltiplas doenças relacionadas. Ignorar essas interações pode levar a diagnósticos
menos precisos [Herrera et al. 2016]. Com essa perspectiva, é possível capturar como
a presença de um rótulo pode influenciar a presença de outro, oferecendo uma visão
mais precisa e contextualizada dos problemas do mundo real [Read et al. 2011].

No entanto, essas abordagens mais detalhadas apresentam desafios [Zhang, Ling
et al. 2013]. Além disso, a incerteza e a imprecisão comuns em tarefas de classificação
multi-rótulo agravam esses desafios. Conjuntos de dados com ruído ou incompletos

1
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podem criar ambiguidades na classificação, onde métodos que não consideram a
incerteza inerente aos dados podem falhar em produzir modelos robustos e confiáveis
[Gibaja e Ventura 2015].

1.1 Motivação e Justificativa

Motivados pelos desafios apresentados, torna-se necessário explorar novas aborda-
gens que contemplem tanto a complexidade, interdependência entre rótulos, incer-
teza e a imprecisão dos dados. Foi nesse contexto que os modelos neuro-fuzzy
apareceram como uma alternativa promissora [Lou et al. 2021]. Esses modelos com-
binam as vantagens das redes neurais, que são eficientes para aprender representa-
ções complexas de grandes volumes de dados, com a lógica fuzzy, conhecida por sua
eficácia no tratamento de incertezas e imprecisões [Zadeh 1965].

Para ilustrar isso, considere o problema de diagnosticar doenças a partir de
exames laboratoriais. Muitas vezes, os resultados de exames clínicos apresentam
variações sutis e sobreposição de valores entre diferentes condições médicas. Por
exemplo, níveis moderadamente elevados de glucose e pressão arterial podem ser
indicativos de diversas condições, como pré-diabetes, diabetes tipo 2 ou até síndrome
metabólica, dependendo de outros fatores. Um modelo neuro-fuzzy consegue lidar
com essa incerteza nos dados de entrada ao permitir graus de pertinência a diferentes
diagnósticos, ajustando-se a cada cenário clínico específico e emulando o raciocínio
humano.

A integração de redes neurais e lógica fuzzy oferece uma maneira de superar
as limitações das técnicas convencionais, proporcionando uma estrutura robusta
para modelar dados complexos e ambíguos [Lin et al. 1991; Jang e Jyh-Shing 1993;
Kasabov, Song e Qun 2002; Lou et al. 2021].donde

Contudo, um aspecto fundamental dos modelos neuro-fuzzy está no tratamento
da informação dos atributos durante a ativação das regras, ou seja, na forma como
o peso dessas regras é calculado no processo de inferência.

Classificadores notáveis, como o ANFIS (Sistema Adaptativo de Inferência Neuro-
Fuzzy [Jang e Jyh-Shing 1993], DENFIS (Sistema Evolutivo Dinâmico de Inferência
Neuro-Fuzzy) [Kasabov, Song e Qun 2002], HYFIS (Sistema Híbrido de Inferência
Neuro-Fuzzy) [Kim e Kasabov 1999], e ML TSK FS (Sistema Fuzzy Multi-Rótulo
Takagi-Sugeno-Kang) [Lou et al. 2021], utilizam operações de agregação tradicionais,
como os operadores mínimo e produto, para esse cálculo. Embora esses operado-
res tenham sido importantes no início do desenvolvimento dos sistemas de inferência
fuzzy, eles não conseguem representar adequadamente a complexidade das interações
entre atributos e rótulos. Isso ocorre porque assumem relações simples ou indepen-
dentes, enquanto contextos de classificação multi-rótulo exigem ferramentas capazes
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de modelar interações mais complexas e interdependências entre os dados.

Portanto, há uma necessidade crítica de explorar novas abordagens de agregação
que possam superar essas limitações, fornecendo um meio mais eficaz de considerar as
interações complexas entre atributos e a incerteza dos dados. O desenvolvimento de
tais métodos representa um passo fundamental para melhorar a eficácia dos modelos
neuro-fuzzy em aplicações de classificação multi-rótulo.

Por outro lado, estudos recentes têm mostrado que o uso da Integral de Cho-
quet como método de agregação no cálculo da agregação das regras em sistemas
de inferência fuzzy tem gerado bons resultados, conforme demonstrado em diversos
estudos [Lucca, Sanz, Dimuro et al. 2019; Marco-Detchart et al. 2021; Wieczynski,
Dimuro et al. 2020; Ferrero-Jaurrieta et al. 2023]. Esses estudos exploram a apli-
cação da Integral de Choquet em áreas como processamento de imagem, memória
de longo prazo, tomada de decisão multicritério, classificação, interfaces cerebrais,
reconhecimento de padrões e gerenciamento de projetos.

A Integral de Choquet é uma ferramenta matemática sofisticada que vai além
dos operadores tradicionais de agregação, como mínimo e máximo, usados em siste-
mas fuzzy convencionais. Enquanto esses operadores se baseiam nos graus individu-
ais de pertinência das variáveis, a Integral de Choquet, definida em termos de uma
medida fuzzy, captura o relacionamento entre os atributos, considerando a impor-
tância relativa de cada combinação possível de variáveis [Lucca, Sanz, Dimuro et al.
2019; Wieczynski, Dimuro et al. 2020].

1.2 Pergunta de Pesquisa

À luz do exposto, formula-se a seguinte pergunta de pesquisa:

A inclusão da Integral Discreta de Choquet na agregação de atributos para calcular
a ativação das regras em um modelo de classificação multi-rótulo neuro-fuzzy pode

levar a uma melhoria no desempenho do modelo original?

1.3 Objetivos

Objetivo Geral

O objetivo principal deste trabalho foi:

• Propor uma generalização do modelo ML-TSK FS, desenvolvendo um novo mo-
delo denominado ML-TSKC FS, que utiliza a Integral de Choquet no processo
de agregação de atributos para o cálculo da ativação das regras (Antecedentes)
para melhorar a performance e robustez na classificação multi-rótulo.
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Objetivos Específicos

1. Estudar os métodos de agregação usados em modelos neuro-fuzzy para classi-
ficação.

2. Implementar a Integral de Choquet no cálculo da ativação das regras no modelo
original, gerando o novo modelo generalizado proposto ML-TSKC FS.

3. Avaliar o desempenho do modelo proposto em comparação com abordagens
existentes na literatura, utilizando conjuntos de domínios diferentes.

4. Validar a eficácia do modelo através de testes estatísticos.

1.4 Metodologia

Para alcançar os objetivos propostos, foi seguida uma metodologia estruturada em
várias etapas:

• Revisão Bibliográfica: Estudo dos modelos neuro-fuzzy existentes e das
técnicas de agregação utilizadas na classificação.

• Desenvolvimento do Modelo: Implementação da integral de Choquet no
algoritmo do modelo ML-TSK FS.

• Implementação Computacional: Adaptação do código do modelo original
ML-TSK FS, utilizando ferramentas de programação adequadas para obter o
código da versão proposta.

• Experimentação: Estudos comparativos do modelo proposto ML-TSKC FS
com o modelo original ML-TSK FS e modelos consolidados na Literatura.

• Análise de Resultados: Avaliação de desempenho do modelo proposto ML-
TSKC FS com métricas padrão em classificação multi-rótulo e realização de
testes estatísticos comparativos.

1.5 Estrutura do Trabalho

O trabalho organiza-se da seguinte maneira:

• Capítulo 1: Apresenta o contexto da pesquisa, motivação e justificativa, além
dos objetivos geral e específicos.

• Capítulo 2: Discute a classificação multi-rótulo, aprendizado de máquina, re-
des neurais artificiais, sistemas de inferência fuzzy, e a Integral de Choquet,
fornecendo a base teórica necessária.
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• Capítulo 3: Descreve o desenvolvimento do modelo proposto, Sistema Fuzzy
Multi-Rótulo Takagi-Sugeno-Kang Choquet (ML-TSKC-FS). Detalha a arqui-
tetura do modelo proposto, descrevendo cada uma das camadas e o método
de aprendizagem utilizado.

• Capítulo 4: Apresenta as ferramentas e técnicas usadas na análise experimen-
tal, os experimentos realizados e os resultados obtidos, tanto em comparação
com o modelo ML-TSK FS quanto com outros modelos da literatura.

• Capítulo 5: Resume as principais conclusões derivadas da pesquisa e aponta
possíveis direções para futuros trabalhos, destacando as contribuições do mo-
delo ML-TSKC FS.





Capítulo 2

PRELIMINARES

Este capítulo apresenta os conceitos teóricos essenciais que fundamentam este traba-
lho. Primeiramente, discute-se a classificação multi-rótulo. Em seguida, apresenta-se
a fundamentação dos sistemas neuro-fuzzy, introduzindo os princípios básicos das
redes neurais artificiais e dos sistemas de inferência fuzzy. A seguir, explora-se a
Integral de Choquet, que desempenha um papel central na agregação de dados. Es-
ses conceitos estabelecem a base para o entendimento do desenvolvimento proposto
neste trabalho.

2.1 CLASSIFICAÇÃO MULTI-RÓTULO

Nesta seção, abordaremos a classificação multi-rótulo no contexto do aprendizado
de máquina supervisionado, também explicaremos suas diferenças em relação às
classificações tradicionais e suas aplicações práticas.

2.1.1 Aprendizado de Máquina

O aprendizado de máquina, ou Machine Learning (ML), é uma subdisciplina da
inteligência artificial que permite a criação de modelos capazes de aprender a partir
dos dados, ajustando seu comportamento com base em padrões e características
extraídas automaticamente, sem necessidade de programação explícita para cada
tarefa [Mitchell 1997]. Esse aprendizado é especialmente útil em problemas onde
há grandes quantidades de dados e a complexidade é alta, tornando a solução por
métodos tradicionais impraticável [Alpaydin 2010].

7
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O principal objetivo do aprendizado de máquina é desenvolver algoritmos que
possam realizar inferências ou previsões a partir de novos dados, imitando a capa-
cidade humana de aprendizado por meio da experiência. Esse processo tem ampla
aplicação, desde a análise de dados e reconhecimento de padrões até a automação
de tarefas em áreas como visão computacional, processamento de linguagem natural
e medicina [Mitchell 1997; Herrera et al. 2016].

Tipos de Aprendizado de Máquina

Existem três tipos principais de aprendizado de máquina, cada um adaptado a di-
ferentes tipos de problemas, conforme mostrado na Figura 2.1.

Figura 2.1: Aprendizado de máquina

• Aprendizado Supervisionado: Neste tipo, o modelo é treinado com dados
rotulados, onde cada entrada tem uma saída conhecida. O objetivo é aprender
a mapear as entradas para as saídas corretas e realizar previsões precisas. As
principais tarefas incluem:

– Classificação: A tarefa de categorizar dados em classes, como identificar
se um e-mail é spam ou não spam.

– Regressão: Focada em prever valores numéricos contínuos, como o preço
de uma casa com base em suas características [Alpaydin 2010].

• Aprendizado Não Supervisionado: Aqui, o modelo trabalha com dados
não rotulados, buscando identificar padrões e relações subjacentes nos dados.
As principais tarefas incluem:

– Clusterização: Agrupamento de dados similares, como segmentar clientes
com base em seu comportamento de compra.
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– Redução de Dimensionalidade: Simplificação dos dados, preservando as
características mais importantes para facilitar a análise e visualização
[Kosko 1992; Herrera et al. 2016].

• Aprendizado por Reforço: Nesse tipo de aprendizado, um agente interage
com o ambiente e aprende por tentativa e erro, buscando maximizar uma
recompensa acumulativa. É amplamente aplicado em controle de robôs e jogos,
onde decisões sequenciais são fundamentais [Mitchell 1997].

Dentre as várias tarefas de aprendizado supervisionado, a classificação é uma
das mais importantes e aplicáveis. A capacidade de um modelo de aprendizado de
máquina de classificar dados com precisão, permite tomadas de decisão automáti-
cas e precisas, sendo, portanto, uma ferramenta poderosa para transformar dados
complexos em informações úteis. [Mitchell 1997; Suthaharan 2016].

2.1.2 Classificação

A classificação de dados é uma tarefa fundamental no aprendizado supervisionado. O
processo de classificação envolve a atribuição de uma ou mais categorias predefinidas
a instâncias de dados com base em características observadas. Cada instância é
classificada em uma categoria específica, com o objetivo de distinguir entre diferentes
classes ou grupos nos dados de entrada. [Mitchell 1997; Herrera et al. 2016]. A seguir,
uma definição formal do processo de classificação.

Definição 1. (Classificação) Seja X o espaço de entrada e Y o espaço de saída.
Definimos o conjunto de treinamento D = {(xi, yi) | 1 ≤ i ≤ n}, onde xi pertence a
X e yi pertence a Y. O objetivo da classificação é aprender um modelo, representado
por uma aplicação fp : X → Y, onde p representa os parâmetros que determinam o
modelo específico. Para um novo dado de entrada x, usamos fp para prever a saída
correspondente ŷ = fp(x).

Figura 2.2: Classificador

Com base na definição 1 e na Figura 2.2, podemos descrever a classificação como
um processo em que um modelo de aprendizado de máquina é treinado para as-
sociar um conjunto de características de entrada, representado pelo espaço X , a
uma variável de saída discreta, representada pelo espaço Y, que contém as clas-
ses ou categorias possíveis. Para isso, utiliza-se um conjunto de treinamento D =
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{(xi, yi) | 1 ≤ i ≤ n}, onde cada xi pertence ao espaço de entrada X e cada yi per-
tence ao espaço de saída Y. O objetivo de um modelo de classificação é estimar
uma função, chamada de classificador, fp : X → Y, onde p representa os parâmetros
que definem o modelo específico (ver Figura 2.2). Assim, dada uma nova instân-
cia de entrada x, o modelo utiliza a função fp para prever a saída correspondente
ŷ = fp(x). Esse processo busca minimizar os erros de classificação e maximizar a
precisão ao aplicar o modelo em novos dados [Alpaydin 2010; Mitchell 1997].

A seguir, abordaremos os principais tipos de classificação em aprendizado de
máquina, incluindo: classificação binária, multi-classe e multi-rótulo.

2.1.3 Tipos de Classificação

De acordo com [Herrera et al. 2016], os tipos de classificação no aprendizado supervi-
sionado são determinados pela natureza das saídas que o modelo deve prever. Esses
tipos incluem classificação binária, multi-classe e multi-rótulo, cada um deles direci-
onado a problemas específicos e características dos dados. Essas variações garantem
que os modelos possam se adaptar a diferentes graus de complexidade e aplicações,
desde problemas simples até os que envolvem múltiplas categorias simultâneas. A
seguir, exploramos cada tipo de classificação em detalhe.

• Classificação Binária: Consiste em atribuir uma das duas categorias possí-
veis a cada item em um conjunto de dados. Este tipo de classificação é simples
e fundamental, onde o objetivo é que o modelo aprenda a distinguir entre duas
opções opostas, como sim ou não. Um exemplo clássico de classificação biná-
ria é a detecção de e-mails de spam, onde o modelo classifica os e-mails como
spam ou não spam como mostrado na Figura 2.3.

Figura 2.3: Exemplo de classificação binária

A Tabela 2.1 apresenta a notação usada para a classificação binária. Neste caso,
cada linha representa um exemplo onde o vetor de entrada é classificado como spam
ou não spam, dependendo das características observadas em x. A variável y indica a
categoria, assumindo valores em L = {0, 1}, onde 1 representa spam e 0 representa
não spam.
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Binário
Exemplo Características y ∈ L = {0, 1}

1 x1 1
2 x2 0

Tabela 2.1: Notação de classificação binária

• Classificação Multi-classe: É um tipo de classificação em que os dados são
atribuídos a uma das várias categorias possíveis. Diferente da classificação
binária, aqui o modelo é treinado com várias classes, e o objetivo é reconhecer
e categorizar novas instâncias em uma dessas classes. Um exemplo típico é
o reconhecimento de imagens, onde o modelo deve classificar uma imagem
em uma das várias categorias possíveis, como pássaro, gato ou cão como
mostrado na Figura 2.4.

Figura 2.4: Exemplo de classificação multi-classe

A Tabela 2.2 apresenta a notação usada para a classificação multi-classe. Nesse
caso, cada linha representa um exemplo onde o vetor de entrada é classificado
em uma das várias categorias possíveis, dependendo das características observa-
das em x. A variável y indica a categoria da classe, assumindo valores em L =
{λ1, λ2, λ3, λ4, λ5}, onde cada valor representa uma classe diferente, como pássaro,
gato, peixes, cão ou coelho.

Multi-classe
Exemplo Características y ∈ L = {λ1, λ2, λ3, λ4, λ5}

1 x1 λ2
2 x2 λ4
3 x3 λ3
4 x4 λ1
5 x5 λ3

Tabela 2.2: Notação de classificação multi-classe
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2.1.4 Classificação Multi-rótulo: Definição e Aplicações

A classificação multi-rótulo é uma evolução dos modelos tradicionais de classifica-
ção, desenvolvida para lidar com problemas onde uma instância pode pertencer a
múltiplas classes simultaneamente. Essa abordagem difere das classificações binária
e multi-classe tradicionais, que assumem que uma instância pertence a apenas uma
categoria. No contexto multi-rótulo, uma instância pode estar associada a vários ró-
tulos, o que aumenta a complexidade e requer técnicas específicas para uma análise
eficiente [Herrera et al. 2016; Zhang, Zhou e Tsoumakas 2009].

Formalmente, o problema de classificação multi-rótulo é definido como uma
extensão dos métodos de classificação tradicionais. Considerando um conjunto
de dados D = {(xi, yi)}ni=1, onde xi representa a instância de entrada e yi =
{yi1, yi2, . . . , yiL} é um vetor de rótulos binários, em que yij = 1 indica que o rótulo
j está presente na instância i, enquanto yij = 0 indica sua ausência [Suthaharan
2016].

Essa definição contrasta com a classificação binária, onde yi possui apenas dois
valores possíveis, e com a classificação multi-classe, onde yi pertence a uma única
classe entre várias. A classificação multi-rótulo, portanto, permite a associação de
uma instância a múltiplas classes simultaneamente, o que requer modelos específicos
para lidar com as correlações e dependências entre rótulos [Herrera et al. 2016].

Figura 2.5: Exemplo de classificação multi-rótulo

A Figura 2.5 exemplifica um caso de classificação multi-rótulo, onde uma ima-
gem pode conter múltiplos rótulos, como gato e cão, capturando a complexidade
do contexto. Em seguida, aprofundaremos na definição formal e detalharemos o
funcionamento do classificador multi-rótulo.

Exemplo Características Multi-rótulo
y1 y2 y3 y4 y ⊆ L = {λ1, λ2, λ3, λ4}

1 x1 1 1 0 1 {λ1, λ2, λ4}
2 x2 0 0 0 1 {λ4}
3 x3 0 1 1 1 {λ2, λ3, λ4}
4 x4 1 0 1 0 {λ1, λ3}
5 x5 0 1 1 0 {λ2, λ3}

Tabela 2.3: Notação de classificação multi-rótulo
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A Tabela 2.3 apresenta a notação usada para a classificação multi-rótulo. Nesse
caso, cada linha representa um exemplo onde o vetor de entrada é classificado em
múltiplas categorias simultaneamente, dependendo das características observadas
em x. A variável y indica os rótulos atribuídos a cada exemplo, assumindo um
subconjunto de valores em L = {λ1, λ2, λ3, λ4}. Isso permite que um único exemplo
pertença a várias classes ao mesmo tempo, como pássaro, gato, peixes, cão ou coelho,
conforme mostrado na Tabela 2.3.

Definição 2. (Classificador Multi-Rótulo) Seja X = RA o espaço de características
e Y = RL o espaço de rótulos. Dado o conjunto de treinamento D, o objetivo é
encontrar uma função fp : X → Y chamado de classificador multi-rótulo que, para
uma nova instância x, preverá o vetor de rótulos apropriados.

Na definição de classificador multi-rótulo o parâmetro p representa os parâmetros
de aprendizagem do modelo fp. A seguir esse processo de aprendizagem é descrito.

Processo de Treinamento de um Classificador Multi-rótulo

O processo de treinamento de um classificador multi-rótulo pode ser dividido em
várias etapas fundamentais. A imagem a seguir ilustra essas etapas, desde a organi-
zação do conjunto de dados até a classificação final de uma nova instância:

Figura 2.6: Esquema do Processo de Treinamento e Predição em
Classificação Multi-rótulo

• Conjunto de Dados e Pré-processamento:O processo começa com a orga-
nização do conjunto de dados, representado na Figura 2.6 à esquerda. Cada
instância x ∈ X ⊂ RA representa uma imagem caracterizada por um conjunto
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de atributos ou características. Para melhorar a qualidade do treinamento,
são aplicadas etapas de pré-processamento, como:

– Normalização e Padronização: Garantir que os atributos tenham es-
calas comparáveis.

– Divisão do Conjunto de Dados: Separar em conjuntos de treina-
mento, validação e teste, assegurando que o modelo seja avaliado em
dados não vistos.

• Inicialização e Ajuste de Parâmetros: Após o pré-processamento, o mo-
delo é inicializado e os hiperparâmetros são ajustados. Isso envolve:

– Inicialização dos Parâmetros do Modelo: Definir valores iniciais
para os pesos ou parâmetros específicos do modelo (ex.: pesos iniciais
para redes neurais).

– Ajuste de Hiperparâmetros: Configurar valores como taxa de apren-
dizado ou regularização usando métodos como grid search.

• Iteração de Treinamento (Aprendizado: O classificador fp, representado
na Figura 2.6 pela mente em treinamento, aprende a mapear as instâncias x

para seus respectivos multi-rótulos ŷ:

fp(x) = ŷ ∈ Y ⊂ RL

• Durante o treinamento:

– Função de Custo: Calcula-se o erro entre as previsões do modelo e os
valores reais, guiando o ajuste dos parâmetros.

– Retropropagação e Atualização de Parâmetros: Ajuste dos pesos
para minimizar o erro, usando algoritmos como retropropagação para
redes neurais.

• Predição em Novos Dados: Após o treinamento, o modelo é aplicado a
novos dados, como ilustrado na parte central da Figura 2.6. Ao receber uma
nova instância x, o classificador gera uma predição multi-rótulo ŷ, onde ŷ =
[1, 0, 1, 0, 0] representa as etiquetas atribuídas à imagem.

• Interpretação dos Resultados: Cada valor em ŷ indica a presença (1)
ou ausência (0) de cada rótulo. Na imagem, os rótulos correspondentes a
Leão (y1) e Tigre (y3) são ativados, indicando que o classificador associou
a imagem a esses animais. Esse resultado é essencial para contextos onde
múltiplas classes podem descrever uma única instância.
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• Validação e Teste: Para avaliar a performance do modelo em dados reais, é
usado um conjunto de teste. Métricas multi-rótulo são aplicadas para verificar
a capacidade do modelo de generalizar para novos dados.

Em seguida, exploraremos algumas técnicas comuns para a construção de clas-
sificadores multi-rótulo, com foco em abordagens baseadas em transformação de
problema e adaptação de algoritmo.

2.1.5 Técnicas Comuns de Classificação Multi-Rótulo

As técnicas para resolver problemas de classificação multi-rótulo, podem ser di-
vididas principalmente em técnicas de transformação de problema e adaptação de
algoritmos [Herrera et al. 2016]. Essas abordagens ajudam a resolver os desafios de
associar múltiplos rótulos a uma mesma instância, seja transformando o problema
em tarefas mais simples ou adaptando algoritmos existentes para lidar diretamente
com múltiplos rótulos.

Transformação de Problema: Converte a classificação multi-rótulo em outras
formas de aprendizado que podem ser resolvidas por métodos de classificação binária
tradicionais. Os principais métodos de transformação de problema incluem:

• BR (Binary Relevance): Trata cada rótulo como um problema separado
de classificação binária. O método proposto por [Łęski 2002] utiliza uma abor-
dagem ε-insensível para melhorar a generalização ao resolver sistemas de de-
sigualdades lineares.

• CC (Classifier Chains) : Também divide o problema em múltiplas classifi-
cações binárias, mas considera a dependência entre rótulos ao usar o resultado
da previsão de cada rótulo como entrada para o próximo rótulo. Essa abor-
dagem foi introduzida por [Read et al. 2011] e permite capturar a correlação
entre rótulos, melhorando o desempenho.

• ML-KNN (Multi-Label k-Nearest Neighbor): Um método baseado em
vizinhos mais próximos, que prevê rótulos para uma nova instância com base
nos k vizinhos mais próximos. Essa técnica clássica foi adaptada para multi-
rótulo por [Zhang e Zhi-Hua 2007].

• MLSF (Multi-Label Selection of Features): O método MLSF combina
aprendizado de meta-rótulos com um processo de seleção de características,
considerando as correlações entre rótulos para identificar características re-
levantes e melhorar a precisão, conforme descrito por [Sun, Kudo e Kimura
2016].
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Adaptação de Algoritmos: Nessa abordagem, ajustam-se algoritmos tradicio-
nais para que lidem diretamente com problemas multi-rótulo, sem a necessidade de
transformá-los em classificações binárias. Alguns dos métodos mais populares de
adaptação incluem:

• BP-MLL (Backpropagation for Multi-Label Learning): Este método
foi um dos primeiros a introduzir o aprendizado de correlação entre rótulos,
assumindo que prever rótulos relacionados juntos é mais preciso do que prever
rótulos isoladamente. Desenvolvido por [Min-Ling e Zhi-Hua 2006], o BP-MLL
utiliza redes neurais específicas para aprendizado multi-rótulo.

• C2AE (Canonical Correlation Analysis Autoencoder): Utiliza análise
de correlação canônica com uma estrutura de autoencoder para aprender ma-
peamentos de características que sejam eficazes, conforme descrito por [Yeh
et al. 2017]. Esse método é particularmente útil para problemas multi-rótulo
complexos.

• JBNN (Joint Binary Neural Network): Em vez de uma função softmax,
o JBNN utiliza múltiplas funções logísticas para modelar rótulos diferentes,
capturando a correlação entre rótulos por meio de uma função de perda de
entropia cruzada binária conjunta [He e Xia 2018].

• HNOML (Hybrid Noise-tolerant Multi-Label Learning): Proposto por
[Zhang, Yu et al. 2019], o HNOML aborda tanto o ruído nos rótulos quanto nas
características através de regularização bi-espacial e enriquecimento de rótulos,
melhorando a robustez e o desempenho em conjuntos de dados com ruídos.

• ML-TSK FS (Multi-Label Takagi-Sugeno-Kang Fuzzy System): Esse
modelo aplica o processo de inferência Takagi-Sugeno-Kang (TSK) com base
em regras fuzzy, conforme [Lou et al. 2021]. Ele é projetado para aprender as
relações entre características e rótulos enquanto minimiza a perda por regres-
são, proporcionando previsões mais precisas.

Esses métodos representam algumas das técnicas mais proeminentes na classi-
ficação multi-rótulo, ilustrando tanto as abordagens de transformação de problema
quanto de adaptação de algoritmos. A escolha da técnica depende da complexi-
dade do problema, da correlação entre rótulos e da necessidade de interpretação dos
resultados. Em seguida, apresentamos algumas das aplicações onde são usados os
classificadores multi-rótulo.
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Aplicações da Classificação Multi-rótulo

Na vida real, muitos domínios produzem dados que não podem ser adequadamente
descritos por apenas um único rótulo. Em vez disso, uma única instância frequen-
temente representa múltiplas características ou está associada a múltiplos conceitos
simultâneos. Esse tipo de complexidade motiva o uso e o estudo de classificadores
multi-rótulo, pois eles são capazes de lidar com situações em que uma instância pode
pertencer a várias classes de forma simultânea.

Referência Domínio Descrição Rótulos
[Blockeel, Dže-
roski e Grbović
1999]

Modelagem am-
biental

Predição de qualidade da água
em rios com múltiplos parâme-
tros

Vários parâmetros
de qualidade

[Grady e Funka-
Lea 2004]

Medicina Segmentação multi-rótulo de te-
cidos em imagens médicas

Diferentes teci-
dos/órgãos

[Boutell et al.
2004]

Imagens Classificação de cenas com múl-
tiplos objetos

Rótulos como
praia, urbano

[Katakis, Tsou-
makas e Vlahavas
2008]

Redes sociais Detecção de spam em sistemas
de marcadores sociais

Rótulos para
spam/não spam

[Briggs, Lakshmi-
narayanan et al.
2012]

Áudio Identificação de espécies de aves
em gravações

Até 13 espécies
por gravação

[Ratnarajah e Qiu
2014]

Medicina Segmentação de estruturas cere-
brais em neonatos

Diferentes estrutu-
ras cerebrais

[Schulz, Mencía e
Schmidt 2016]

Ciências sociais Classificação de incidentes urba-
nos em tweets

Tipos de inciden-
tes (acidente, in-
cêndio, etc.)

[Haobo Wang et
al. 2021]

Comércio Detecção de fraude em e-
commerce

Rótulos: fraude,
segurança, risco,
autenticação

[Deniz, Erbay e
Coşar 2022]

Comércio ele-
trônico

Classificação de opiniões de cli-
entes

Opiniões positi-
vas, negativas,
neutras

Tabela 2.4: Aplicações da classificação multi-rótulo em diferentes
domínios

A Tabela 2.4 resume algumas dessas aplicações, destacando a diversidade de do-
mínios onde a classificação multi-rótulo se mostra indispensável. Como é possível
observar, esses dados vêm de diversas áreas, como modelagem ambiental, redes so-
ciais, áudio, comércio eletrônico e afins, ilustrando a versatilidade e a importância
do paradigma multi-rótulo. Essas aplicações demonstram a diversidade de rótulos
atribuídos a uma mesma instância reflete a complexidade dos dados do mundo real,
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tornando o paradigma multi-rótulo uma ferramenta essencial para capturar a to-
talidade de informações presentes em cada observação. A seguir, apresentamos os
principais desafios enfrentados pela classificação multi-rótulo.

2.1.6 Desafios da Classificação Multi-rótulo

Os desafios da classificação multi-rótulo devem-se à complexidade intrínseca dos
dados e às características únicas deste tipo de problema. Em contraste com a clas-
sificação binária ou multi-classe, a classificação multi-rótulo exige que o modelo lide
com a possibilidade de que cada instância pertença a múltiplas classes simultanea-
mente, o que gera questões específicas que precisam ser abordadas para que o modelo
seja eficiente. Abaixo estão os principais desafios:

• Correlações entre Rótulos: Um dos maiores desafios na classificação multi-
rótulo é modelar as correlações entre rótulos, pois, ao contrário da classificação
tradicional, os rótulos em um cenário multi-rótulo geralmente não são inde-
pendentes. Frequentemente, a presença de um rótulo aumenta a probabilidade
de ocorrência de outro. Por exemplo, uma música classificada como rock pode
também ser classificada como alternativa, devido às características comparti-
lhadas entre esses gêneros [Herrera et al. 2016].

• Desequilíbrio de Classes e Dimensionalidade Alta: Outro desafio recor-
rente em tarefas de classificação multi-rótulo é o desequilíbrio de classes, que
ocorre quando alguns rótulos aparecem muito mais frequentemente que outros
no conjunto de dados. Esse problema se agrava em cenários de alta dimensio-
nalidade, onde o número de rótulos é elevado, aumentando a complexidade do
modelo e o risco de sobreajuste [Mitchell 1997].

• Imprecisão, Incerteza e Ambiguidade na Classificação Multi-rótulo

Em contextos de classificação multi-rótulo, é comum enfrentar problemas de
imprecisão, incerteza e ambiguidade nos dados, que podem comprometer a
precisão dos modelos. Esses problemas são próprios dos dados multi-rótulo e
do processo de atribuir vários rótulos a uma mesma instância.

– Imprecisão: Ocorre quando os dados de entrada possuem características
que podem ser interpretadas de diversas maneiras, dificultando a deter-
minação exata dos rótulos. Esse problema é particularmente relevante em
tarefas de análise de sentimentos, onde uma frase pode conter elementos
positivos e negativos ao mesmo tempo, gerando interpretações ambíguas
[Herrera et al. 2016].

– Incerteza: Refere-se à probabilidade de que uma instância pertença a
múltiplos rótulos com diferentes graus de confiança. Para lidar com esse
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tipo de incerteza, métodos baseados em teorias de probabilidade e lógica
fuzzy são amplamente utilizados, permitindo modelar a associação com
cada rótulo e suavizar transições entre rótulos [Suthaharan 2016; Keller
et al. 2016].

– Ambiguidade: Surge em casos onde há sobreposição de característi-
cas entre rótulos, dificultando a distinção pelo classificador. Esse é um
problema comum em tarefas de classificação de imagens complexas, onde
múltiplas categorias podem estar representadas visualmente em uma mesma
imagem, criando desafios para a separação de rótulos [Mitchell 1997; Al-
paydin 2010].

Esses desafios exigem o uso de técnicas avançadas, como modelos probabi-
lísticos, redes neurais adaptativas e sistemas fuzzy, que são projetados para
manejar altos níveis de incerteza e ambiguidade nos dados [Keller et al. 2016].
A seguir, abordaremos os sistemas neuro-fuzzy, uma técnica eficaz para lidar
com complexidades e incertezas em classificação multi-rótulo.

2.2 SISTEMAS NEURO-FUZZY

Os Sistemas Neuro-Fuzzy (SNF) combinam as capacidades das Redes Neurais Arti-
ficiais (RNA) e dos Sistemas de Inferência Fuzzy (SIF). Essa integração busca me-
lhorar a habilidade de aprendizado das redes neurais com a interpretabilidade dos
sistemas fuzzy, criando modelos que podem lidar com dados complexos e adaptar-se
a mudanças. [Kosko 1992; Jang, Jyh-Shing et al. 1997; Chen e Pham 2000].

Figura 2.7: Arquitetura de um Sistema Neuro-fuzzy

A Figura 2.7 ilustra a arquitetura de um sistema neuro-fuzzy, onde as camadas
das redes neurais interagem com o sistema de inferência fuzzy para criar um sistema
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híbrido que combina aprendizado e interpretabilidade. Nas próximas seções, explo-
raremos mais profundamente as Redes Neurais Artificiais e os Sistemas de Inferência
Fuzzy.

2.2.1 Fundamentos de Redes Neurais Artificiais (RNA)

As Redes Neurais Artificiais (RNA) são inspiradas no funcionamento do cérebro
humano e surgiram com os trabalhos pioneiros de Fitch e Pitts [Fitch 1944]. Com-
postas por neurônios artificiais conectados por meio de sinapses ponderadas, as RNA
têm a capacidade de aprender padrões complexos a partir de grandes conjuntos de
dados, sem necessidade de programação explícita para cada tarefa.

Componentes Fundamentais das RNA

As redes neurais utilizam componentes fundamentais que são cruciais para sua ca-
pacidade de aprendizado e adaptação. Entre esses componentes temos, o neurônio
biológico, o bias e a função de ativação.

• Neurônio Biológico e Artificial: Um neurônio artificial, assim como um
neurônio biológico, processa entradas e gera uma saída com base em uma
função de ativação.

Figura 2.8: Comparativo entre o neurônio biológico e o neurônio
matemático.

A Figura 2.8 destaca a analogia entre o neurônio biológico e o neurônio mate-
mático, mostrando como entradas ponderadas são processadas por uma função
de ativação para gerar uma saída.

Os componentes principais de um neurônio matemático incluem:

– x: Vetor de entradas, onde cada componente xi representa uma caracte-
rística.

– w: Vetor de pesos, onde cada wi indica a importância da entrada corres-
pondente.
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–
∑

: Soma ponderada das entradas.

– f: Função de ativação.

– b: Bias, que ajusta a entrada da função de ativação.

A operação do neurônio pode ser descrita pelas seguintes equações [Haykin
2001, p.37]:

uk =
n∑

i=1
xiwki

yk = f (uk + bk)

Figura 2.9: Efeito do bias sobre o campo local induzido.

A Figura 2.9 ilustra o impacto do bias: valores negativos diminuem o poten-
cial de ativação, enquanto valores positivos aumentam, ajustando a função de
ativação para otimizar a resposta do neurônio.

• Funções de Ativação: São elementos essenciais em redes neurais, pois intro-
duzem não-linearidade nas saídas dos neurônios, permitindo que a rede capture
padrões complexos nos dados. A escolha da função de ativação depende do
tipo de rede neural e do problema específico. A Tabela 2.5 resume as prin-
cipais funções de ativação, suas fórmulas, redes neurais associadas, e gráficos
que ilustram o comportamento de cada função.
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Tipo Função f(s) Rede Neural Gráfico

Linear f(s) = s Hopfield, BSB

Sinal f(s) =

+1 se s ≥ 0

−1 se s < 0
Perceptron

Degrau f(s) =

+1 se s ≥ 0

0 se s < 0
Perceptron, BAM

Sigmoidal f(s) = 1
1+e−s

Perceptron, redes
profundas

ReLU f(s) =

s se s ≥ 0

0 se s < 0

Redes
Convolucionais,
redes profundas

Softmax f(si) = esi∑
j

esj

Classificação
multi-classe, camada

de saída de redes
profundas

Tangente
Hiperbólica

f(s) = tanh(s) =
1−e−2s

1+e−2s

Perceptron,
Hopfield, BAM,

BSB

Tabela 2.5: Funções de Ativação e Redes Neurais

Arquitetura de RNA

Uma rede neural é composta por múltiplas camadas: camada de entrada, camadas
ocultas e camada de saída, cada uma desempenhando um papel essencial no proces-
samento dos dados. Essas camadas determinam a complexidade e a capacidade de
generalização da rede.

Entre as arquiteturas mais conhecidas estão:

• Perceptron Simples: O perceptron simples é o modelo mais básico de uma
rede neural, composto por uma única camada de nós de entrada conectados
diretamente a uma saída. Ele aplica uma função de ativação ao resultado de
uma combinação linear ponderada das entradas. Embora seja eficiente para
problemas linearmente separáveis, suas limitações aparecem ao lidar com dados
que não seguem essa característica.

• Perceptron Multicamadas (MLP - Multi-Layer Perceptron): O per-
ceptron multicamadas é uma extensão do perceptron simples, incorporando
uma ou mais camadas ocultas entre as entradas e a saída. Com funções de
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ativação não lineares, como ReLU ou sigmóide, ele pode aprender relações
complexas e não lineares nos dados. Essa arquitetura é amplamente usada em
tarefas de classificação, regressão e previsão.

• Redes Neurais Feedforward (FFNN) As redes neurais feedforward gene-
ralizam o perceptron multicamadas, permitindo o fluxo unidirecional da infor-
mação, da entrada até a saída. Elas são simples de treinar e entender, sendo
amplamente aplicadas em problemas de previsão, classificação e modelagem de
dados estáticos. Por sua simplicidade estrutural, são a base para redes mais
avançadas.

• Redes com Funções de Base Radial (RBF): As redes de função de base
radial utilizam funções de base radial como ativação para modelar dados não
lineares. Essas funções medem a distância entre os dados de entrada e um
ponto central, proporcionando flexibilidade na classificação e regressão. São
ideais para problemas onde é necessária uma interpolação precisa ou a apro-
ximação de funções complexas, sendo amplamente aplicadas em aprendizado
supervisionado.

• Redes Convolucionais (CNN - Convolutional Neural Networks): As
CNNs são especializadas no processamento de dados com estrutura espacial,
como imagens e vídeos. Utilizam camadas convolucionais para extrair ca-
racterísticas locais e camadas de pooling para reduzir a dimensionalidade,
preservando informações essenciais. Elas são amplamente usadas em visão
computacional, como no reconhecimento de imagens e na detecção de objetos.

• Redes Recorrentes (RNN - Recurrent Neural Networks): As RNNs
são projetadas para lidar com sequências temporais ou dados ordenados, uti-
lizando conexões que introduzem memória nas iterações. Variedades como
LSTM e GRU resolvem problemas de longo prazo, como o desaparecimento
do gradiente em sequências longas. Essas redes são amplamente aplicadas em
tradução automática, séries temporais e processamento de linguagem natural.
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Figura 2.10: Arquitetura de uma Rede Perceptron Multicamadas.

A Figura 2.10 exemplifica uma arquitetura MLP, onde várias camadas ocultas
ajudam a capturar padrões complexos em dados para tarefas de classificação.

Figura 2.11: Arquitetura de uma Rede com Funções de Base Radial.

A Figura 2.11 apresenta uma rede RBF, usada principalmente para aproximação
de funções e problemas de classificação onde a posição dos dados no espaço de
entrada é relevante.

Aprendizado de RNA

O aprendizado consiste em ajustar os pesos das conexões com base nos dados de
entrada, o que pode resultar na criação, modificação ou remoção dessas conexões..
Quando o peso de uma conexão é zero, ela é considerada inexistente. O aprendizado
continua até que esses pesos se estabilizem, indicando que a rede conseguiu aprender
ou captar o padrão desejado. Cada rede possui critérios próprios para ajustar esses
pesos, conhecidos como regras de aprendizado, que definem o tipo de aprendizado:
supervisionado ou não supervisionado e por reforço.

• Supervisionado: A rede é treinada com pares de entrada e saída conhecidos.
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• Não Supervisionado: A rede identifica padrões por si mesma, ajustando-se
de forma autônoma aos dados disponíveis.

• Por Reforço: A rede ajusta-se com base em recompensas e penalidades.

Algoritmo de treinamento

Os algoritmos de treinamento para redes neurais podem ser classificados em duas
categorias principais: algoritmos supervisionados e algoritmos não supervisionados,
cada um com objetivos e métodos distintos que refletem a forma como a rede processa
e aprende com os dados. Dentro dos algoritmos de aprendizado supervisionado, o
algoritmo de retropropagação é o método mais amplamente utilizado para treinar
redes neurais.

• Algoritmo de Retropropagação (backpropagation): O algoritmo de re-
tropropagação permite que a rede aprenda de maneira eficiente ajustando os
pesos camada por camada, a partir da minimização do erro com base no mé-
todo do gradiente.

– Correção de erro: a rede ajusta os pesos imediatamente após a apre-
sentação de cada padrão de entrada, corrigindo o erro na saída de forma
direta e pontual. Esse método oferece um ajuste responsivo, pois a rede
corrige seus parâmetros constantemente.

Figura 2.12: Correção de erro

– Método do gradiente: os pesos são atualizados para minimizar o erro
quadrático médio, considerando todos os padrões de entrada. Esse pro-
cesso de minimização leva os pesos na direção oposta ao gradiente da
função de erro, resultando em uma abordagem mais estável e robusta,
que visa otimizar a precisão global da rede ao longo de todo o conjunto
de dados.
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Figura 2.13: Gradiente descendente

Passos da Retropropagação

1. Inicialização dos Pesos:

• Os pesos wij são inicializados aleatoriamente para cada conexão entre os
neurônios.

2. Propagação Direta (Forward Pass):

• Calcula-se a saída yj de cada neurônio aplicando a função de ativação σ

à soma ponderada das entradas:

zj =
∑

i

wij · xi + bj

yj = σ(zj)

3. Cálculo do Erro:

• O erro total E é calculado comparando a saída prevista ŷ com a saída
desejada y, usando uma função de perda (exemplo: erro quadrático):

E = 1
2
∑

k

(yk − ŷk)2

4. Retropropagação do Erro (Passo Reverso):

• Calcula-se o gradiente do erro em relação a cada peso. Para o neurônio
de saída k:

δk = (yk − ŷk) · σ′(zk)

• Propaga-se esse erro para ajustar cada peso das camadas anteriores.

5. Atualização dos Pesos:
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• Ajusta-se os pesos wij usando a taxa de aprendizado η:

wij ← wij − η · δj · yi

6. Repetição:

• Repete-se o processo para todas as amostras até que o erro seja minimi-
zado ou satisfaça um critério de parada.

Figura 2.14: Algoritmo de Retropropagação.

A Figura 2.14 mostra o fluxo do algoritmo de retropropagação, onde o erro é
propagado de volta na rede para ajustar os pesos e melhorar a precisão.

Estruturas das Redes Neurais Artificiais

As redes neurais podem ser classificadas pela arquitetura e pelo método de apren-
dizado [Haykin 2001]. As principais arquiteturas são:

• Feedforward (Alimentação Direta): Nesta arquitetura, o sinal é propa-
gado em uma única direção, da camada de entrada até a camada de saída, sem
ciclos ou feedback.

• Rede Recorrente (RNN): Diferente das redes feedforward, as redes recor-
rentes possuem conexões de feedback, permitindo que informações de passos
anteriores influenciem os estados futuros da rede.

• Rede Convolucional (CNN): Utilizadas para análise de imagens e dados
com estrutura espacial.

• Rede de Funções de Base Radial (RBF): Com funções de ativação radial,
aplicáveis a problemas de classificação e regressão.
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Vantagens das RNAs

• Capacidade de Aprendizado Adaptativo: As redes neurais possuem uma
habilidade notável de aprendizado adaptativo, ajustando-se a partir de gran-
des volumes de dados para melhorar o desempenho de tarefas específicas sem
necessidade de reprogramação manual para cada caso [Haykin 2001].

• Reconhecimento de Padrões Complexos: São especialmente eficazes em
tarefas como reconhecimento de padrões e classificação, onde conseguem iden-
tificar correlações complexas e sutis nos dados que métodos tradicionais não
conseguem capturar [Oliveira 2007].

• Robustez e Tolerância a Falhas: A arquitetura distribuída das redes neu-
rais confere a elas uma alta tolerância a falhas, mantendo um bom desempenho
mesmo quando algumas conexões ou neurônios apresentam problemas [Jang e
Jyh-Shing 1993].

• Versatilidade em Diferentes Aplicações: São amplamente utilizadas em
áreas como visão computacional, processamento de linguagem natural e siste-
mas de recomendação, provando-se versáteis para diversas aplicações de inte-
ligência artificial [Kasabov 2002].

• Capacidade de Generalização: Redes neurais são capazes de generalizar
bem ao serem expostas a novos dados, o que as torna ideais para aplicações em
ambientes dinâmicos e incertos, onde os dados estão em constante mudança
[Lee e Lin 1991].

• Integração com Outros Sistemas Inteligentes: Combinadas com a lógica
fuzzy, as redes neurais são capazes de formar sistemas neuro-difusos, unindo a
capacidade de aprendizado adaptativo com a habilidade de lidar com incertezas
e imprecisões em dados reais [Zadeh 1965].

Com a compreensão das estruturas das redes neurais artificiais, seguimos agora para
a próxima seção, onde exploraremos os fundamentos dos Sistemas de Inferência
Fuzzy.

2.2.2 Fundamentos dos Sistemas de Inferência Fuzzy (SIF)

Os sistemas de inferência fuzzy são amplamente reconhecidos por sua capacidade
de lidar com incertezas e complexidades em uma vasta gama de aplicações, como
controle de processos, modelagem e previsão. Ao contrário dos sistemas tradicionais,
que operam com limites rígidos e definições exatas, os sistemas fuzzy utilizam graus
de verdade para representar informações, proporcionando uma abordagem mais fle-
xível e adequada ao mundo real [Chen e Pham 2000]. Essa flexibilidade permite
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que os sistemas fuzzy capturem nuances e variações sutis, tornando-se valiosos em
contextos onde a incerteza e a gradualidade das transições prevalecem [Ross 2004;
Cox 1994; Keller et al. 2016].

Componentes Fundamentais dos SIF

Para compreender adequadamente os sistemas de inferência fuzzy, é essencial come-
çar pela definição de conceitos fundamentais como:

• Conjuntos Fuzzy e Função de Pertinência A teoria dos conjuntos fuzzy
foi introduzida por Lotfi Zadeh em 1965, para lidar com a incerteza e a vagui-
dade inerentes a muitos conceitos do mundo real. Ao contrário dos conjuntos
clássicos, onde um elemento pertence totalmente ou não ao conjunto, os con-
juntos fuzzy permitem que os elementos tenham graus variáveis de pertinência,
que variam entre 0 e 1, capturando nuances e transições graduais que são co-
muns em termos linguísticos, como temperatura agradável ou altura moderada
[Zadeh 1965].

Definição 3. (Conjunto Fuzzy) Um conjunto fuzzy A em um universo X é
representado por:

A = {(x, µA(x)) | x ∈ X}

onde µA : X → [0, 1] é a função de pertinência que associa a cada elemento
x ∈ X um grau de pertencimento µA(x), que varia entre 0 e 1. Esse valor
indica o quão fortemente o elemento x pertence ao conjunto A, de acordo com
os critérios a seguir: µA(x) = 0: x não pertence ao conjunto. µA(x) = 1: x

pertence completamente ao conjunto. 0 < µA(x) < 1: x pertence parcialmente
ao conjunto, com o grau de pertencimento proporcional ao valor de µA(x).

Figura 2.15: Componentes de um Conjunto Fuzzy

A Figura 2.15 ilustra a definição de um conjunto fuzzy. A função de per-
tinência µA(x) associada ao conjunto fuzzy A atribui a cada elemento x no
domínio X um grau de pertinência entre 0 e 1. Na imagem, vemos como a
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função de pertinência varia gradualmente, refletindo a transição suave de não
pertencimento para pertencimento total.

• Tipos de funções de pertinência: Existem diferentes tipos de funções de
pertinência na Figura 2.16, são apresentados três formatos comuns de funções
de pertinência. A função triangular é simples e fácil de interpretar, enquanto
a trapezoidal é útil para representar intervalos mais amplos de pertinência.
A função gaussiana, por sua vez, oferece uma transição mais suave entre os
diferentes graus de pertinência.

Figura 2.16: Funções de Pertinência: Triangular, Trapezoidal e Gaus-
siana.

Funções de Pertinência Fórmulas

Triangular: µ(x) =


x−a
b−a , se x ∈ (a, b]
c−x
c−b , se x ∈ (b, c]

0, outro caso

Trapezoidal: µ(x) =



x−a
b−a , se x ∈ (a, b]

1, se x ∈ (b, c]
d−x
d−c , se x ∈ (c, d]

0, outro caso
Gaussiana: µ(x) = exp

{
− (x−a)2

2σ2

}
Tabela 2.6: Fórmulas de Funções de Pertinência

Na Tabela 2.6 são apresentadas as fórmulas matemáticas das funções de per-
tinência da Figura 2.16. Essas funções de pertinência podem ser escolhidas
de acordo com o nível de precisão desejado, a simplicidade do modelo e as
características do problema a ser modelado. São amplamente utilizadas para
lidar com a incerteza em sistemas fuzzy, permitindo uma representação flexível
de situações complexas [Ross 2004].

• Variável Linguística e Termo Linguístico
Uma variável linguística x, definida no universo X, é uma variável cujos valores
são subconjuntos fuzzy de X. Zadeh [Zadeh 1975] definiu uma variável lin-
guística como uma variável cujos valores são expressos em termos de palavras
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ou frases em uma linguagem natural ou artificial, permitindo a representação
de conceitos subjetivos ou ambíguos de forma quantitativa.
A vantagem do uso de variáveis linguísticas é que elas permitem descrever fenô-
menos complexos de maneira intuitiva e flexível, utilizando termos linguísticos
que refletem a forma como os humanos interpretam e compreendem a realidade
[Ross 2004].

Exemplo: A variável temperatura pode assumir termos linguísticos como
baixa, média e alta ver Figura 2.17, cada um desses valores linguísticos corres-
ponde a um subconjunto fuzzy do universo de discurso, que, para essa variável,
poderia ser o intervalo de temperaturas entre 0°C e 40°C.

Figura 2.17: Variáveis Linguísticas e Termos Linguísticos.

A Figura 2.17, mostra como a variável linguística Temperatura é descrita por
valores linguísticos: Baixa, Média e Alta. Cada termo linguístico tem uma
função de pertinência que determina o grau de associação de qualquer valor de
temperatura a essas categorias qualitativas, permitindo que o sistema trabalhe
com descrições interpretáveis.

• Lógica Fuzzy

A lógica fuzzy é uma extensão da lógica clássica desenvolvida para lidar com
incertezas e imprecisões ao invés de valores binários estritos de verdadeiro e
falso. Introduzida por [Zadeh 1975] , a lógica fuzzy permite graus interme-
diários de verdade, onde proposições podem ter valores contínuos entre 0 e 1.
Esse modelo é particularmente útil em situações onde os conceitos não são es-
tritamente definidos, permitindo uma representação mais flexível e adaptável
de fenômenos complexos [Chen e Pham 2000].
Com a lógica fuzzy, é possível representar condições e inferências utilizando
variáveis linguísticas e conjuntos fuzzy, criando assim um sistema que pode
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lidar com informações imprecisas. Para isso, são usados operadores como a
conjunção (AND), a disjunção (OR) e o complemento (NOT) que permitem
combinar condições de forma gradual atribuindo graus de verdade entre 0 e 1.

Operador Fórmula Fuzzy Descrição
Conjunção

(AND)
µA∧B(x) = min(µA(x), µB(x)) ou

µA∧B(x) = µA(x) · µB(x)
Combina condições usando o menor
grau ou produto dos valores.

Disjunção (OR)
µA∨B(x) = max(µA(x), µB(x)) ou

µA∨B(x) =
µA(x) + µB(x)− µA(x) · µB(x)

Permite combinar alternativas to-
mando o maior grau ou soma.

Complemento
(NOT)

µ¬A(x) = 1− µA(x)
Calcula o grau de não-pertinência de
uma condição fuzzy.

Tabela 2.7: Operadores Fuzzy e suas Fórmulas

Esses operadores são essenciais para construir inferências flexíveis: a conjunção
permite combinar condições que devem ocorrer simultaneamente a disjunção
considera alternativas e o complemento reflete a ausência ou negação de uma
condição. A lógica fuzzy, forma a base para a criação de regras fuzzy e é
fundamental na modelagem de sistemas que operam sob condições de incerteza
e imprecisão [Zadeh 1975; Ross 2004].

• Regras Fuzzy e o Raciocínio Se-Então: Uma vez estabelecidos os conjun-
tos fuzzy e as variáveis linguísticas, o próximo passo é estruturar o conheci-
mento em regras fuzzy do tipo "se-então". As regras fuzzy são utilizadas para
capturar o raciocínio humano de maneira formalizada, conectando condições
a ações ou respostas específicas. Cada regra segue a estrutura básica:

Se (condição), Então (ação ou consequência).

Por exemplo, uma regra fuzzy poderia ser:

Se a temperatura é alta e a umidade é baixa, então aumentar o fluxo de ar.

Essa regra utiliza variáveis linguísticas e seus respectivos conjuntos fuzzy para
descrever uma condição antecedente e associá-la a uma ação consequente.

– O antecedente (parte se) especifica as condições que devem ser avaliadas.

– O consequente (parte então) define a ação a ser executada caso as con-
dições sejam atendidas.

Cada regra fuzzy é ativada em graus proporcionais ao grau de pertencimento
das variáveis de entrada aos conjuntos fuzzy especificados no antecedente da
regra. Esse grau de ativação permite que o sistema fuzzy interprete situações
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complexas e tome decisões de forma gradativa e adaptativa, o que é especial-
mente útil em sistemas de controle e decisão com informações imprecisas [Cox
1994; Kosko 1992].

• Agregação dos Antecedentes e Consequentes nas Regras Fuzzy

A agregação dos antecedentes e consequentes em regras fuzzy é crucial para
o processo de inferência fuzzy, pois permite combinar múltiplas condições e
respostas de maneira coerente.

– Agregação dos Antecedentes: A combinação dos antecedentes deter-
mina o grau de ativação da regra, dependendo da satisfação das condições
de entrada. Operadores como o mínimo e o produto são amplamente usa-
dos para calcular essa ativação, com o mínimo exigindo que todas as con-
dições sejam cumpridas ao menor grau, enquanto o produto proporciona
uma ativação proporcional às condições [Uebele 1995; Bezdek 1999].

– Agregação dos Consequentes: A combinação dos consequentes per-
mite integrar as saídas de múltiplas regras para obter uma resposta única.
Métodos como a média ponderada garantem que as regras mais forte-
mente ativadas tenham maior influência na saída final [Bouchon-Meunier
1998].

A agregação dos antecedentes e consequentes ajuda os sistemas fuzzy a res-
ponderem de forma adaptativa e precisa em cenários com incertezas e interde-
pendência.

Sistema de Inferência Fuzzy (SIF)

O sistema de inferência fuzzy é uma estrutura que transforma entradas numéricas em
conjuntos fuzzy (fuzzificação), aplica regras do tipo SE-ENTÃO para relacionar essas
entradas às saídas, combina os resultados das regras (agregação) e, por fim, converte
o resultado em um valor concreto (defuzzificação). Esse processo é especialmente útil
em problemas onde os dados são incertos ou vagos, como no controle de processos
industriais e na tomada de decisão em sistemas complexos [Ross 2004].
Os modelos de inferência fuzzy de Mamdani (criado por Ebrahim Mamdani em
1975) e Takagi-Sugeno-Kang (TSK) (desenvolvido por Takagi e Sugeno em 1985)
são os mais utilizados em sistemas fuzzy. A principal diferença entre os modelos de
Mamdani e TSK está na forma dos consequentes das regras no processo de saída. O
modelo Mamdani gera uma saída fuzzy que precisa ser defuzzificada, o que facilita a
interpretabilidade, sendo ideal para aplicações que requerem ajustes manuais, como
o controle industrial tradicional. Já o modelo TSK não precisa ser defuzzificada,
pois produz uma saída numérica direta via funções consequentes, é mais eficiente
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e preciso, tornando-se preferido para sistemas que exigem resposta rápida e alta
precisão [Ruspini e Patrone 1998; Ross 2004]. A Figura 2.18 ilustra o fluxo completo
do sistema de inferência fuzzy, dividindo-o em três operações principais. Também,
podemos observar duas abordagens de saída para sistemas fuzzy: a saída de tipo
Mamdani (parte superior) e a saída TSK (parte inferior). A seguir, descrevemos as
etapas do processamento no modelo TSK, com base na Figura 2.18 apresentado.

Figura 2.18: Sistema de Inferência Fuzzy.

No modelo TSK, os sistemas fuzzy produzem saídas nítidas (crisp) através de
uma combinação ponderada dos consequentes das regras. Cada regra gera uma saída
numérica diretamente, eliminando a necessidade de defuzzificação.

• Fuzzificação: Na etapa de fuzzificação, os valores de entrada x1 e x2 são
convertidos em graus de pertinência para os conjuntos fuzzy corresponden-
tes. Esses conjuntos fuzzy são representados por suas funções de pertinência,
µAi(x1) para a variável x1 e µBj (x2) para a variável x2. Cada valor de en-
trada é associado a um grau de pertencimento para diferentes conjuntos fuzzy,
por exemplo, A1, A2, A3 para x1; B1, B2, B3 para x2, conforme ilustrado na
imagem.

µAi(x1) e µBj (x2)

• Motor de Inferência: No modelo TSK, o motor de inferência é composto por
duas sub-etapas principais: a avaliação das regras e a agregação dos resultados.

– Avaliação das Regras: Cada regra fuzzy é ativada de acordo com os
graus de pertencimento dos antecedentes. No modelo TSK, cada regra
Rk é expressa como Se x1 é Ai e x2 é Bj , então y = fk(x1, x2), onde
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fk(x1, x2) é uma função linear ou constante das variáveis de entrada. Por
exemplo, uma regra específica poderia ser:

R4 : Se x1 é A2 e x2 é B1, então y = f4(x1, x2) = p4x1 + q4x2 + r4

O grau de ativação da regra Rk é determinado pelos operadores mínimo
ou produto que são generalizações da interseção clássica, que combina os
graus de pertinência dos antecedentes:

Ativação de Rk = min(µAi(x1), µBj (x2)) ou
∏

(µAi(x1), µBj (x2))

– Agregação dos Resultados: Diferente do modelo de Mamdani, onde
a saída é um conjunto fuzzy, no modelo TSK cada regra gera uma saída
nítida fk(x1, x2) que será agregada na saída final.

• Saída Final: A saída final do sistema é calculada por uma média ponderada
das saídas das regras, ponderadas pelo grau de ativação de cada regra. A saída
final y é dada por:

y =
∑

k Ativação de Rk · fk(x1, x2)∑
k Ativação de Rk

Esse método de ponderação combina as contribuições de cada regra para ge-
rar uma resposta precisa e direta, eliminando a necessidade de defuzzificação.
Além disso, é computacionalmente eficiente, já que evita o processo de defuz-
zificação, o que é especialmente útil em aplicações que demandam respostas
rápidas e precisas, como em sistemas de classificação.

Embora o Sistema Takagi-Sugeno (TKS) ofereça alta precisão nas predições.
Os sistemas fuzzy são conhecidos pela sua interpretabilidade, o que significa que
eles são mais fáceis de entender e explicar em comparação com outros modelos
mais complexos. Essa interpretabilidade se deve ao fato de que os sistemas fuzzy
usam regras simples no formato se-então. Essas regras linguísticas são intuitivas e
próximas da linguagem humana, facilitando a compreensão do processo de decisão
[Ross 2004; Gacto, Alcalá e Herrera 2011].

Além disso, a interpretabilidade é ainda mais trabalhada através de métodos
que simplificam o sistema fuzzy. Alguns métodos reduzem o número de regras e
variáveis, tornando o sistema menos complexo, ajudando a garantir que o sistema
continue fácil de entender.

Modelagem da incerteza, imprecisão e ambiguidade dos SIF

A modelagem da incerteza, imprecisão e ambiguidade é essencial para a criação de
modelos que lidam bem com dados complexos e interpretativos. Os sistemas fuzzy
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oferecem uma abordagem flexível [Ruspini e Patrone 1998; Ross 2004; Cox 1994], A
seguir uma explicação de cada um:

• Incerteza: Refere-se à falta de informações completas ou precisas sobre um
dado ou fenômeno. A incerteza ocorre quando não temos certeza absoluta
sobre a classificação de um dado porque as informações disponíveis são in-
suficientes. Em sistemas fuzzy, a incerteza é modelada permitindo que um
elemento pertença parcialmente a diferentes categorias, cada uma com um
grau de confiança específico.

Exemplo 1. Em um sistema de previsão meteorológica, a incerteza está pre-
sente quando há 70% de chance de chuva e 30% de chance de céu nublado,
refletindo a falta de certeza total sobre as condições do tempo.

• Imprecisão: A imprecisão refere-se à falta de exatidão inerente a uma descri-
ção ou medição de um fenômeno. Em vez de exigir uma divisão exata entre os
estados possíveis, a lógica fuzzy lida com a imprecisão ao permitir gradações
contínuas de pertencimento dentro de um conjunto fuzzy. Assim, em sistemas
fuzzy, conceitos vagos como alto ou quente são modelados por meio de fun-
ções de pertinência, que indicam o grau com que um elemento pertence a
um determinado conjunto.

Exemplo 2. Para o conceito de altura, uma pessoa com 1,70 m pode pertencer
parcialmente aos conjuntos baixo e alto com diferentes graus de pertinência,
permitindo uma descrição mais detalhada.

• Ambiguidade: Refere-se à possibilidade de múltiplas interpretações para um
mesmo dado, onde cada interpretação pode ser igualmente válida. A ambi-
guidade ocorre quando um dado pode ser classificado de diferentes maneiras
dependendo do contexto. Em sistemas fuzzy, isso é modelado permitindo que
um dado tenha graus de pertinência em várias categorias ao mesmo tempo,
refletindo a diversidade de interpretações.

Exemplo 3. Em um sistema de recomendação de filmes, um filme pode ser
classificado como tanto comédia quanto drama com diferentes graus, pois o
gênero pode ter uma interpretação ambígua dependendo do ponto de vista.

Os sistemas fuzzy contribuem significativamente para os sistemas neuro-fuzzy,
ajudando-os a lidar de maneira adaptativa com dados incertos, imprecisos e ambí-
guos. Ao incorporar a lógica fuzzy, os sistemas neuro-fuzzy podem classificar dados
complexos, ajustando-se às variações e permitindo várias interpretações, o que é
essencial em situações onde os dados não são totalmente claros [Ruspini e Patrone
1998]. Além disso, os sistemas fuzzy tornam o processo de decisão mais fácil de
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entender, pois suas regras e graus de pertinência são mais interpretáveis. Isso sig-
nifica que as decisões do modelo ficam mais transparentes, permitindo que usuários
e especialistas compreendam melhor como as predições são feitas. Essa combinação
de adaptabilidade e interpretabilidade faz dos sistemas neuro-fuzzy uma solução po-
derosa para problemas que envolvem dados complexos[Gacto, Alcalá e Herrera 2011;
Czogała e Leski 2000].

2.2.3 Sistemas Neuro-Fuzzy (SNF)

Os Sistemas Neuro-Fuzzy combinam a habilidade de aprendizado das Redes Neurais
Artificiais (RNA) com a interpretabilidade dos Sistemas de Inferência Fuzzy (SIF)
[Ruspini e Patrone 1998; Czogała e Leski 2000]. Essa integração resulta em modelos
capazes de lidar com dados incertos e vagos, adaptando-se a mudanças e aprendendo
com novos dados. Ao unir essas duas abordagens, os sistemas neuro-fuzzy têm o
potencial de capturar relações complexas entre variáveis e fornecer previsões precisas,
mantendo uma estrutura interpretável e flexível.

Figura 2.19: Estrutura de um Sistema Neuro-Fuzzy

A Figura 2.19 ilustra a estrutura básica de um sistema neuro-fuzzy, onde a
camada fuzzy lida com a incerteza e a camada neural ajusta automaticamente os
parâmetros com base nos dados.

Estrutura dos Sistemas Neuro-Fuzzy

Essa estrutura é inspirada no perceptron multicamada de redes neurais e adapta os
pesos como conjuntos fuzzy, enquanto as funções de ativação, saída e propagação são
configuradas para implementar uma trajetória de inferência fuzzy [Ruspini 1998].

A estrutura multicamada de um sistema neuro-fuzzy é geralmente composta por
cinco camadas principais:

• Camada de Entrada: Essa camada é responsável por coletar as variáveis
de entrada. Cada variável de entrada é representada por um nó que contem
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informação vinda do ambiente, como dados de sensores ou outros tipos de
sinais.

• Camada de Fuzzificação: Nessa etapa, os valores que entram no sistema
são convertidos em valores fuzzy, que são mais flexíveis e podem lidar com
incertezas. A fuzzificação utiliza funções de pertinência, que transformam os
valores das variáveis de entrada em graus de pertinência.

• Camada de Ativação das Regras: Aqui, cada regra fuzzy é representada
por um nó. As regras do tipo SE-ENTÃO são ativadas de acordo com as
entradas fuzzificadas. Para isso, são utilizados operadores como o mínimo ou
o produto para combinar essas entradas.

• Camada de Normalização: A normalização ajusta as forças de ativação, de
modo que a soma de todas elas seja igual a 1. Esse processo é feito para evitar
que alguma regra tenha um peso muito maior do que as outras, o que poderia
desequilibrar o resultado.

• Camada dos Consequentes: Cada regra gera uma saída específica, usando
cálculos simples nas entradas. Em muitos casos, são usados modelos lineares
(funções matemáticas simples) que ajudam a criar respostas mais precisas e
contínuas. Esse tipo de cálculo é comum em sistemas como o modelo TSK.

• Camada de Saída (Defuzzificação): Esta é a última camada, onde os va-
lores fuzzy gerados ao longo do processo são convertidos novamente em valores
nítidos, ou seja, valores precisos e bem definidos no domínio numérico. Esse
valor final é uma resposta numérica que pode ser usada para ações práticas,
como controle de equipamentos ou tomadas de decisão.

A Figura 2.19 apresenta uma visão detalhada das cinco camadas principais,
mostrando como os sinais são processados desde a entrada até a saída. Este modelo
é projetado para facilitar algoritmos de aprendizado e permite a incorporação de
conhecimentos prévios na forma de regras linguísticas, aumentando a interpretabi-
lidade do sistema.

Modelos de Sistemas Neuro-Fuzzy

Ao longo dos anos, diversos modelos neuro-fuzzy foram propostos, cada um com ca-
racterísticas específicas que visam melhorar o desempenho em aplicações de controle,
classificação, e modelagem de sistemas complexos. A Tabela 2.8 apresenta alguns
dos principais modelos neuro-fuzzy desenvolvidos entre 1990 e 2022, destacando suas
contribuições e arquiteturas. Os modelos listados na Tabela 2.8 mostram a evolução
dos sistemas neuro-fuzzy desde abordagens mais tradicionais, como o ANFIS, até
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modelos modernos e especializados, como o ML-TSK FS, que incorpora técnicas de
classificação multi-rótulo com base em redes neurais e lógica fuzzy.

Cada um desses modelos apresenta características próprias e se destaca em dife-
rentes aplicações:

• FALCON e GARIC (Início dos anos 90): Ambos os modelos foram fun-
damentais para estabelecer as bases dos sistemas neuro-fuzzy, proporcionando
os primeiros frameworks de controle adaptativo com inferência fuzzy e apren-
dizado neural.

• ANFIS (1993): Este modelo é um dos mais amplamente utilizados em aplica-
ções práticas, combinando lógica fuzzy de Takagi-Sugeno com ajuste de parâ-
metros via redes neurais. Sua popularidade se deve à simplicidade e eficiência
para modelagem e controle.

• Modelos Evolutivos e Dinâmicos (Década de 2000): Modelos como o
DENFIS e o EFUNN introduziram capacidades de evolução e adaptação em
tempo real, sendo essenciais em aplicações que requerem atualização contínua
e adaptação a dados em fluxo.

• Avanços Recentes em Classificação Multi-rótulo (2022): O ML-TSK
FS é um exemplo de aplicação moderna, onde a lógica fuzzy é integrada com
redes neurais para lidar com classificações complexas, considerando correlações
entre múltiplos rótulos, o que é relevante em domínios como a bioinformática
e a análise de sentimentos.

Esta visão geral dos modelos neuro-fuzzy destaca como as arquiteturas e técnicas
de aprendizado foram se diversificando e especializando ao longo do tempo, cada qual
contribuindo com características únicas para o avanço deste campo.
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Ano Modelo Descrição
1991 FALCON (Fuzzy Adaptive Learning Control Network), proposto por Lin e Lee,

utiliza uma estrutura de cinco camadas de inferência fuzzy para con-
trole adaptativo [Lin et al. 1991].

1992 GARIC (Generalized Approximate Reasoning based Intelligence Control), um
modelo de controle adaptativo desenvolvido por Berenji, com base em
raciocínio aproximado [Berenji e Khedkar 1992].

1993 ANFIS (Adaptive Neuro-Fuzzy Inference System), desenvolvido por Jang,
combina redes neurais com lógica fuzzy de Takagi-Sugeno para ajuste
de parâmetros fuzzy [Jang e Jyh-Shing 1993].

1993 FUN Proposto por Sulzberger, integra redes neurais com lógica fuzzy de
Takagi-Sugeno para ajuste de parâmetros, com foco em modelagem
[Sulzberger, Tschichold-Gurman e Vestli 1993].

1996 FINEST Proposto por Tano, combina redes neurais com um controlador
fuzzy baseado em regras para controle em sistemas complexos [Tano,
Oyama e Arnould 1996].

1998 SONFIN Rede Neuro-Fuzzy de Inferência Auto-Construtiva, proposta por Ju-
ang e Lin, ajusta automaticamente sua estrutura de regras [Chia-Feng
e Chin-Teng 1998].

1999 NEFCON Proposto por Nauck e Kruse, combina redes neurais com controla-
dores fuzzy para aplicações de controle adaptativo [Nauck e Kruse
1999].

1999 EFUNN Desenvolvido por Kasabov, é um sistema neuro-fuzzy evolutivo que
ajusta sua estrutura e parâmetros dinamicamente [Kasabov e S. Qun
1999].

1999 NFN Proposto por Figueiredo e Gomide, foca na otimização de regras fuzzy
para sistemas adaptativos [Figueiredo e Gomide 1999].

1999 HYFIS (Hybrid Fuzzy Inference System), desenvolvido por Kim, utilizado
em modelagem de séries temporais [Kim e Kasabov 1999].

2002 DENFIS (Dynamic Evolving Neural-Fuzzy Inference System), desenvolvido
por Kasabov, ideal para modelagem em tempo real [Kasabov, Song
e Qun 2002].

2004 SOFNN (Self-Organizing Fuzzy Neural Network), modelo que ajusta automa-
ticamente sua estrutura e parâmetros durante o aprendizado [Leng,
Prasad e McGinnity 2004].

2012 mANFIS Versão modificada do ANFIS, usada para análise de emoções huma-
nas complexas utilizando sinais visuais e EEG [Qing, Sungmoon e
Minho 2012].

2019 SOFIS (Local optimality of self-organising neuro-fuzzy inference systems),
otimiza localmente a estrutura para desempenho aprimorado [Gu,
Angelov e Rong 2019].

2021 ML-TSK FS Modelo multi-rótulo que combina redes neurais e lógica fuzzy para
classificação com foco na correlação de rótulos [Lou et al. 2021].

Tabela 2.8: Alguns Modelos Neuro-Fuzzy (1990-2022)
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Motivação para o Uso de Sistemas Neuro-Fuzzy

A principal motivação para o uso de sistemas neuro-fuzzy está em sua capacidade de
unir o raciocínio aproximado dos sistemas fuzzy com o aprendizado adaptativo das
redes neurais, criando uma solução robusta para problemas complexos e dinâmicos.

• Aprendizado e Adaptação das Redes Neurais: As redes neurais fornecem
ao sistema neuro-fuzzy a capacidade de aprender e adaptar-se continuamente a
novos dados, essencial para contextos onde as informações estão em constante
mudança.

• Interpretabilidade dos Sistemas Fuzzy: A lógica fuzzy utiliza regras lin-
guísticas simples (do tipo se-então), facilitando a transparência e a compre-
ensão do modelo. Em áreas críticas como a medicina e finanças, essa interpre-
tabilidade é essencial para que especialistas entendam e validem as decisões do
sistema.

• Tratamento de Ambiguidade, Imprecisão e Incerteza nos Dados: Os
sistemas fuzzy são projetados para lidar com dados vagos e ambíguos, per-
mitindo que informações incertas sejam classificadas de maneira flexível. Isso
torna os sistemas neuro-fuzzy ideais para problemas de classificação em cená-
rios complexos, onde a variabilidade e a falta de precisão dos dados desafiam
métodos tradicionais.

A Tabela 2.8 de evolução dos sistemas neuro-fuzzy, de 1991 a 2022, destaca o
desenvolvimento contínuo desses modelos e a diversificação de suas aplicações. Essa
trajetória reforça a relevância dos sistemas neuro-fuzzy para enfrentar desafios reais
que demandam aprendizado adaptativo, transparência e manejo eficaz de incertezas.

Os sistemas neuro-fuzzy oferecem uma abordagem apropriada para problemas
onde a incerteza e a necessidade de aprendizado se encontram. Ao combinar a
interpretabilidade dos sistemas fuzzy com a capacidade adaptativa das redes neurais,
esses sistemas fornecem uma solução flexível para uma ampla gama de aplicações,
desde controle de processos industriais até reconhecimento de padrões.

2.3 A INTEGRAL DE CHOQUET DISCRETA

Para compreender plenamente a Integral de Choquet Discreta, é importante primeiro
abordar a fundamentação teórica das funções de agregação e das medidas fuzzy.
Também serão apresentados exemplos que facilitam a compreensão desses conceitos.
Cada um desses elementos será explorado nas próximas subseções.
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2.3.1 Fundamentos dos Operadores de Agregação

A agregação é o processo de combinar diferentes valores numéricos em um único valor
representativo, conhecido como função de agregação [Grabisch, Marichal et al. 2009].
Em sistemas fuzzy, funções de agregação são amplamente aplicadas para combinar
graus de pertinência, pesos de critérios, graus de preferência, entre outros. As
funções de agregação têm uma importância fundamental em áreas como estatística,
ciência da computação, matemática e economia, permitindo sintetizar informações
para análises e tomadas de decisão.

Definição 4. (Função de Agregação) Uma função de n > 1 argumentos que mapeia
o hipercubo unitário no intervalo [0, 1], A : [0, 1]n → [0, 1], é chamada de função de
agregação quando satisfaz:

• Condições de Fronteira: A(0, 0, . . . , 0) = 0 e A(1, 1, . . . , 1) = 1.

• Monotonicidade: Se x⃗ ≤ y⃗ então A(x⃗) ≤ A(y⃗), para xi ≤ yi em todo i ∈
{1, . . . , n}.

Figura 2.20: Representação geométrica de uma função de agregação

Exemplo 4. Imagine um sistema de recomendação de filmes, onde um usuário
avalia diferentes aspectos (enredo, direção, atuação) em uma escala de 0 a 1. As
funções de agregação combinam essas notas para determinar uma avaliação final do
filme.

Classes de Operadores de Agregação

Os operadores de agregação podem ser classificados em quatro categorias principais:
média, conjuntiva, disjuntiva e mista [Grabisch, Marichal et al. 2009]. Além disso,
dependendo de suas propriedades específicas, essas funções são divididas em classes
adicionais, incluindo T-normas, T-conormas, funções de sobreposição (overlaps) e
funções de agrupamento (groupings) [Bustince, Fernandez et al. 2010; Bustince,
Pagola et al. 2011].
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• T-Normas: Uma função de agregação bivariada T : [0, 1]2 → [0, 1] é dita ser
uma t-norma se satisfizer as seguintes propriedades:

– (T1) Comutatividade;

– (T2) Associatividade;

– (T3) Condição de fronteira: ∀x ∈ [0, 1] : T (x, 1) = x.

As t-normas são amplamente utilizadas em operações de conjunção em lógica
fuzzy.

• T-Conormas: Uma função de agregação bivariada S : [0, 1]2 → [0, 1] é uma
t-conorma se satisfizer as seguintes propriedades:

– (S1) Comutatividade;

– (S2) Associatividade;

– (S3) Condição de fronteira: ∀x ∈ [0, 1] : S(x, 0) = x.

As t-conormas são utilizadas em operações de disjunção e são o operador dual
das t-normas.

• Funções de Sobreposição (Overlap): Uma função bivariada O : [0, 1]2 →
[0, 1] é dita ser uma função de sobreposição se satisfizer as seguintes condições:

– (O1) O é comutativa;

– (O2) O(x, y) = 0 se, e somente se, xy = 0;

– (O3) O(x, y) = 1 se, e somente se, xy = 1;

– (O4) O é crescente;

– (O5) O é contínua.

Funções de sobreposição são úteis em casos onde se deseja medir o grau de
sobreposição ou similaridade entre dois valores.

• Funções de Agrupamento (Grouping): Uma função bivariada G : [0, 1]2 →
[0, 1] é dita ser uma função de agrupamento se satisfizer as seguintes condições:

– (G1) G é simétrica;

– (G2) G(x, y) = 0 se, e somente se, x = y = 0;

– (G3) G(x, y) = 1 se, e somente se, x = 1 ou y = 1;

– (G4) G é crescente;

– (G5) G é contínua.
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As funções de agrupamento são aplicadas em contextos onde se deseja combinar
valores que representam diferentes agrupamentos ou categorias.

Na Tabela 2.9, apresentamos alguns exemplos.

Fórmula Notação Classe Tipo

min{x1, . . . , xn} min Conjuntiva t-norma, overlap

max{x1, . . . , xn} max Disjuntiva t-conorma, grouping∏n
i=1 xi PR Conjuntiva t-norma, overlap

1
n

∑n
i=1 xi AM Média não tem tipo(

1
n

∑n
i=1 x2

i

)1/2
QM Média não tem tipo

(∏n
i=1 xi)1/n GM Média não tem tipo(

1
n

∑n
i=1

1
xi

)−1
HM Média não tem tipo

Tabela 2.9: Exemplos de Funções de Agregação

Onde xi ̸= 0 em HM.

Medidas Fuzzy

Antes de abordarmos a Integral de Choquet, é necessário entender o conceito de
medidas fuzzy, que desempenham um papel essencial no cálculo da integral e na
modelagem de interações complexas entre atributos. As medidas fuzzy permitem a
agregação de valores, considerando incertezas e interdependências entre atributos, o
que é fundamental para aplicações em sistemas onde a relação entre os dados não é
estritamente aditiva.

As medidas fuzzy generalizam os conceitos habituais de medida, como compri-
mento, área e volume [Barros e Bassanezi 2010]. Ao contrário das medidas clássicas,
que são σ-aditivas, as medidas fuzzy enfraquecem essa propriedade, preservando
apenas a monotonicidade. Isso permite maior flexibilidade na modelagem de inter-
dependências complexas, uma característica essencial para sistemas de classificação
multi-rótulo, como o que abordamos em nossa pesquisa.

Para entender melhor a relevância das medidas fuzzy, é útil apresentar a defi-
nição formal de um espaço mensurável e de uma medida, antes de passarmos para
o conceito específico de medida fuzzy e sua aplicação na agregação de atributos
interdependentes.

Definição 5. (Espaço Mensurável e Medida) [Pedrycz e Gomide 1998] Um espaço
mensurável é descrito pelo par (Ω,A), onde Ω é o universo e A é uma σ-álgebra de
subconjuntos de Ω. Uma medida m é uma função definida em (Ω,A), com valores
não negativos, que satisfaz:
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1. m(∅) = 0.

2. m é σ-aditiva, ou seja, para uma família de conjuntos disjuntos {Ai}:

m

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

m(Ai).

No entanto, em sistemas onde os elementos interagem, como na avaliação de
produtividade de grupos de trabalho, essa abordagem pode ser restritiva. Considere,
por exemplo, a produtividade de um grupo de trabalhadores: a combinação de duas
subequipes pode não resultar em uma produtividade que seja simplesmente a soma
das partes, devido à interdependência entre os trabalhadores.

Medidas Fuzzy e a Ausência de Aditividade: As medidas fuzzy relaxam a
condição de σ-aditividade, exigindo apenas monotonicidade. Dessa forma, se A ⊂ B,
então m(A) ≤ m(B), mas m(A∪B) ̸= m(A)+m(B) necessariamente, mesmo que A e
B sejam disjuntos. Isso permite que as medidas fuzzy capturem dependências mais
complexas entre elementos. Essa flexibilidade torna as medidas fuzzy adequadas
para representar interdependências e incertezas em sistemas como o modelo ML-
TSKC FS, abordado em nosso estudo.

Definição 6. (Medida Fuzzy)[Sugeno 1974] Seja N = {1, . . . , n} um conjunto
finito e 2N o conjunto das partes de N . Uma função m : 2N → [0, 1] é uma medida
fuzzy se:

1. m(∅) = 0 e m(N) = 1.

2. Se X ⊆ Y , então m(X) ≤ m(Y ) para qualquer X, Y ⊆ N .

Interações Modeladas pelas Medidas Fuzzy: As medidas fuzzy possibilitam
três tipos de interações entre conjuntos disjuntos A e B:

• Independência: m(A ∪B) = m(A) + m(B).

• Interação Positiva: m(A ∪B) > m(A) + m(B).

• Interação Negativa: m(A ∪B) < m(A) + m(B).

Essas interações permitem que as medidas fuzzy capturem dinâmicas complexas
entre atributos, o que é particularmente útil em sistemas de classificação multi-
rótulo, onde a interação entre os atributos pode influenciar diretamente a perfor-
mance do modelo.

A Figura 2.21 mostra a representação gráfica de uma estrutura de medida fuzzy
para um conjunto com quatro elementos. Cada nó representa um subconjunto res-
peitando a ordem de inclusão.

Medidas Fuzzy Utilizadas no Estudo
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Figura 2.21: Estrutura de medidas fuzzy para um conjunto finito
N = {1, 2, 3, 4}

Para o cálculo da Integral de Choquet em nosso estudo, selecionamos cinco tipos
de medidas fuzzy, descritas na Tabela 2.10. Cada medida reflete uma abordagem
diferente para representar incerteza e importância relativa entre atributos.

Medida Definição

Uniforme mU(I) = |I|
n

Relativa mR(I) =
∑

j∈I
j∑

i∈N
i

Produto mΠ(I) =
∏

j∈I
j∏

i∈N
i

Potência mp(I) =
(

|I|
n

)q
, q > 0

Ponderada mw(I) = ∑
i∈I pi

Tabela 2.10: Medidas fuzzy utilizadas no estudo.

Descrição das Medidas Utilizadas: Cada medida fuzzy possui caracterís-
ticas específicas que a tornam apropriada para contextos distintos:

• Medida Uniforme: Indica igual importância para todos os atributos, sendo
útil em cenários onde a homogeneidade é desejada.
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• Medida Relativa: Prioriza atributos com maior relevância relativa, refletindo
situações onde alguns atributos têm impacto mais significativo.

• Medida Produto: Usa interdependência multiplicativa, adequada para aná-
lises de risco e situações de alta interação entre atributos.

• Medida de Potência: Ajusta a sensibilidade por meio de q, destacando
subconjuntos específicos conforme o contexto.

• Medida Ponderada: Permite especificar pesos diretos para cada atributo,
oferecendo controle total sobre a influência individual.

Assim, as medidas fuzzy são essenciais para modelar incertezas e interdepen-
dências complexas em sistemas onde a relação entre os atributos é crucial. Essa
característica justifica a escolha da Integral de Choquet como técnica de agregação
em nosso modelo, pois ela permite capturar essas interações de forma mais eficaz.
Na próxima seção, discutiremos a Integral de Choquet e sua aplicação específica no
modelo ML-TSKC FS, mostrando como ela contribui para melhorar a classificação
multi-rótulo.

Integral de Choquet Discreta: Definição e propriedades.

A integral de Choquet foi introduzida por Gustave Choquet no contexto da teoria das
medidas fuzzy, visando criar uma forma de integração que pudesse lidar com medidas
não aditivas e, portanto, capturar interdependências entre variáveis [Choquet 1954].
Posteriormente, essa integral foi adaptada e explorada na teoria fuzzy, notavelmente
pelos trabalhos de Murofushi e Sugeno, que utilizaram a integral de Choquet para
modelar medidas fuzzy em contextos de decisão multicritério, onde as interações
entre critérios são cruciais [Murofushi e Sugeno 1989].

No contexto discreto, a integral de Choquet atua como um operador de agre-
gação não aditivo, permitindo que se capturem interações complexas entre as
variáveis, ou critérios, sem as limitações dos operadores de agregação tradicionais,
como a média ponderada ou o produto. Em particular, a integral de Choquet dis-
creta é amplamente utilizada em sistemas de decisão multicritério e aprendizado
de preferências, onde a importância de cada critério depende dos outros critérios
considerados. Formalmente, a Integral de Choquet discreta é definida como:

Definição 7. (Integral de Choquet discreta ) Seja m : 2N → [0, 1] uma medida fuzzy.
A integral de Choquet discreta de x⃗ = (x1, x2, . . . , xn) ∈ [0, 1]n com relação à medida
fuzzy m é uma função Cm : [0, 1]n → [0, 1], definida por

Cm(x⃗) =
n∑

i=1

(
x(i) − x(i−1)

)
·m
(
A(i)

)
, (2.1)
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onde x⃗↗ =
(
x(1), . . . , x(n)

)
é uma permutação não-decrescente de x⃗, isto é, 0 ≤

x(1) ≤ . . . ≤ x(n), por convenção x(0) = 0, e A(i) = {(i), . . . , (n)} é o subconjunto
dos índices das n− i + 1 maiores componentes de x⃗.

Onde a medida m fornece o peso relativo de cada subconjunto de N , permitindo
que o operador de agregação considere a importância das variáveis em conjunto,
refletindo a influência das interações entre elas [Grabisch e Labreuche 2010; Beliakov,
James e Wu 2020].

Comparação com outros Operadores de Agregação

A integral de Choquet discreta oferece uma flexibilidade muito maior do que opera-
dores de agregação mais simples, como o mínimo e o produto, principalmente quando
precisamos lidar com situações de alta dependência entre as variáveis de entrada.
Cada um desses operadores tradicionais possui limitações específicas que reduzem
sua capacidade de capturar interações complexas entre variáveis.

O operador mínimo, denotado por min(x1, x2, . . . , xn), é um operador conserva-
dor que considera apenas o menor valor entre as variáveis de entrada x1, x2, . . . , xn.
Isso significa que, mesmo que outras variáveis tenham valores mais altos, o mínimo
só considera o valor mais baixo, o que o torna pouco adequado para situações onde
a interação entre variáveis é importante.

O operador produto, por sua vez, combina as variáveis multiplicando seus valores:

∏
(x1, x2, . . . , xn) = x1 × x2 × · · · × xn.

Embora esse operador leve em conta todas as variáveis, ele não consegue capturar
interações específicas entre subconjuntos de variáveis. Ele pressupõe uma certa
independência entre as variáveis, o que limita sua capacidade de modelar interações
complexas entre critérios distintos [Beliakov, James e Wu 2020; Grabisch 2000].

Em contraste, a integral de Choquet se destaca porque permite:

• Monotonicidade: A integral de Choquet é não-decrescente, ou seja, se
o valor de uma variável xi aumenta, mantendo as outras constantes, o valor
da integral de Choquet não diminui. Isso garante que o operador respeite
aumentos nas variáveis individuais, capturando assim a natureza não-aditiva
das interações. Em termos formais, para duas variáveis xi e xj em um conjunto
X = {x1, x2, . . . , xn}, temos:

xi ≥ xj ⇒ Cm(x1, . . . , xi, . . . , xn) ≥ Cm(x1, . . . , xj , . . . , xn),

onde Cm é a integral de Choquet discreta em relação à medida fuzzy m.
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• Sensibilidade às Interações: A integral de Choquet consegue capturar a
forma como as variáveis interagem entre si, graças à medida fuzzy m. Por
exemplo, se duas variáveis xi e xj têm uma influência maior quando consi-
deradas juntas do que individualmente, a medida fuzzy reflete essa sinergia,
atribuindo um peso maior ao subconjunto {i, j} do que à soma dos pesos in-
dividuais m({i}) e m({j}):

m({i, j}) > m({i}) + m({j}).

Se, por outro lado, duas variáveis são redundantes, a medida fuzzy pode refletir
isso, atribuindo um peso menor ao subconjunto {i, j}:

m({i, j}) < m({i}) + m({j}).

Essa sensibilidade permite à integral de Choquet lidar com dependências com-
plexas, o que é especialmente útil em sistemas de decisão e avaliação multicri-
tério [Krishnan, Kasim e Bakar 2015; Grabisch, Roubens et al. 2000].

• Flexibilidade: A integral de Choquet se adapta ao contexto, ajustando o
peso de cada variável conforme o grupo específico em que ela está inserida. Isso
significa que, diferente de uma média ponderada comum, onde cada variável
tem um peso fixo, na integral de Choquet o peso de uma variável xi pode
mudar dependendo dos outros critérios presentes. Essa flexibilidade é ideal
em aplicações práticas, como recomendação de produtos e sistemas de ranking,
isso ajuda a modelar as interações entre critérios de maneira precisa, refletindo
relações de dependência que os operadores mínimo e produto não conseguem
capturar [Tehrani, Cheng e Hullermeier 2012].

Essas características fazem da integral de Choquet uma excelente escolha para
problemas que requerem uma visão detalhada das interações e dependências en-
tre critérios. Em contextos como decisão multicritério e agregação de informações
complexas, a integral de Choquet permite que o peso de cada critério seja ajus-
tado conforme a presença de outros critérios, criando uma agregação adaptada ao
contexto que reflete melhor as interações entre variáveis [Benvenuti, Vivona et al.
2002].

Exemplos Comparativos: Integral de Choquet vs. Operadores Mínimo e
Produto

Vamos apresentar exemplos para cada uma das propriedades destacadas: Mono-
tonicidade, Sensibilidade às Interações e Flexibilidade. Compararemos a
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Integral de Choquet com o operador mínimo e o operador produto para de-
monstrar como, em determinadas situações, a integral de Choquet captura nuances
que os operadores mais simples não conseguem.

• Monotonicidade: Queremos ver como cada operador reage a um aumento
em uma das variáveis, mantendo a outra constante.

– Exemplo: Suponha que temos duas variáveis representando critérios de
avaliação: x1 = 0.7 e x2 = 0.5.

– Objetivo: O operador deve aumentar seu valor final se x1 aumentar,
refletindo a importância crescente desse critério.

– Medida fuzzy: para a integral de Choquet: m(A1) = 0.6, m(A2) = 0.4,
e m(A1,2) = 0.9.

Operadores:

– Operador Mínimo:

min(x1, x2) = min(0.7, 0.5) = 0.5

Se aumentarmos x1 para 0.9:

min(0.9, 0.5) = 0.5

Observação: O operador mínimo não reflete o aumento em x1, ele depende
apenas do menor valor.

– Operador Produto:

x1 × x2 = 0.7× 0.5 = 0.35

Se aumentarmos x1 para 0.9:

0.9× 0.5 = 0.45

Observação: O produto reflete o aumento, mas penaliza o valor final, pois
multiplicar por 0.5 ainda reduz significativamente o resultado.

– Integral de Choquet:

Cm(x1, x2) = (x(1) − x(0)) ·m(A12) + (x(2) − x(1)) ·m(A2)

Com x(1) = 0.5, x(2) = 0.7:

Cm(x1, x2) = (0.5− 0) · 0.9 + (0.7− 0.5) · 0.4 = 0.5 · 0.9 + 0.2 · 0.4 = 0.53
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Se aumentarmos x1 para 0.9:

Cm(x1, x2) = (0.5− 0) · 0.9 + (0.9− 0.5) · 0.4 = 0.5 · 0.9 + 0.4 · 0.4 = 0.66

Observação: A integral de Choquet aumenta mais significativamente, cap-
turando o impacto positivo do aumento de x1.

• Sensibilidade às Interações: Vamos considerar um caso onde as variáveis
representam dois critérios que, quando atuam juntos, têm uma influência maior
do que quando isolados (sinergia).

– Exemplo: Suponha que temos dois critérios de avaliação: x1 = 0.4 e
x2 = 0.8.

– Objetivo: O operador deve refletir que esses critérios são mais valiosos
juntos do que separadamente.

– Medida fuzzy: m(A1) = 0.4, m(A2) = 0.5, e m(A1,2) = 0.9.

Operadores:

– Operador Mínimo:

min(x1, x2) = min(0.4, 0.8) = 0.4

Observação: O operador mínimo ignora a interação entre x1 e x2 e usa
apenas o menor valor.

– Operador Produto:

x1 × x2 = 0.4× 0.8 = 0.32

Observação: O produto combina ambos os valores, mas sem capturar a
sinergia entre eles.

– Integral de Choquet:

Cm(x1, x2) = (x(1) − x(0)) ·m(A1,2) + (x(2) − x(1)) ·m(A2)

Com x(1) = 0.4, x(2) = 0.8:

Cm(x1, x2) = (0.4− 0) · 0.9 + (0.8− 0.4) · 0.5 = 0.4 · 0.9 + 0.4 · 0.5 = 0.56

Observação: A integral de Choquet captura a sinergia entre x1 e x2,
resultando em um valor agregado maior.

• Flexibilidade: Vamos considerar um caso onde o peso de um critério deve
depender da presença de outro critério.
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– Exemplo: Suponha que temos dois critérios de avaliação: x1 = 0.6 e
x2 = 0.8.

– Objetivo: O operador deve dar mais peso a x1 quando x2 está presente,
refletindo uma dependência contextual entre os critérios.

– Medida fuzzy: m(A1) = 0.4, m(A2) = 0.5, e m(A1,2) = 0.85.

Operadores:

– Operador Mínimo:

min(x1, x2) = min(0.6, 0.8) = 0.6

Observação: O operador mínimo ignora a influência adicional de x2 sobre
x1.

– Operador Produto:

x1 × x2 = 0.6× 0.8 = 0.48

Observação: O produto considera ambos os valores, mas sem ajustar o
peso de x1 baseado na presença de x2.

– Integral de Choquet:

Cm(x1, x2) = (x(1) − x(0)) ·m(A1,2) + (x(2) − x(1)) ·m(A2)

ou
Cm(x1, x2) = x(1) · (m(A1,2)−m(A2)) + x(2) ·m(A2)

Observação: Notemos que, o peso de uma variável x(i) pode mudar de-
pendendo dos outros critérios presentes, oferecendo uma agregação mais
sensível ao contexto.
Para x(1) = 0.6, x(2) = 0.8 temos:

Cm(x1, x2) = (0.6− 0) · 0.85 + (0.8− 0.6) · 0.5 = 0.6 · 0.85 + 0.2 · 0.5 = 0.61

Esses exemplos mostram que a Integral de Choquet pode capturar nuances
de interação e dependência entre variáveis de forma que os operadores de mínimo
e produto não conseguem, tornando-a mais flexível e sensível ao contexto em situ-
ações de decisão multicritério e agregação de informações complexas.

A seguir, apresentamos alguns exemplos didáticos da Integral de Choquet.

Exemplo 5. Média Aritmética como Caso Particular da Integral de Cho-
quet
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A média aritmética é um caso particular da Integral de Choquet quando usamos
uma medida fuzzy uniforme, isto é, uma medida que atribui a mesma importância
a todos os subconjuntos. Para ilustrar, consideremos três variáveis x1 = 1, x2 = 3,
e x3 = 5 com pesos iguais w1 = w2 = w3 = 1

3 .
Calculando a média aritmética:

MA =
(1

3 × 1
)

+
(1

3 × 3
)

+
(1

3 × 5
)

= 3.

Usando a Integral de Choquet com uma medida uniforme, obtemos o mesmo
valor:

m({x1}) = m({x2}) = m({x3}) = 1
3 ,

m({x1, x2}) = m({x1, x3}) = m({x2, x3}) = 2
3 ,

m({x1, x2, x3}) = 1.

Calculando a Integral de Choquet:

Cm(x) = (x(1) − 0)m({x1, x2, x3}) + (x(2) − x(1))m({x2, x3}) + (x(3) − x(2))m({x3}).

Substituindo os valores:

Cm(x) = (1− 0)× 1 + (3− 1)× 2
3 + (5− 3)× 1

3 = 3.

Assim, a Integral de Choquet recupera a média aritmética com uma medida uniforme.

Exemplo 6. Modelagem Prática com a Integral de Choquet
Consideremos um cenário onde três trabalhadores, Leo, Kim e Eva, têm dife-

rentes níveis de produtividade. Nosso objetivo é calcular a produção total do grupo
usando a Integral de Choquet, que permite modelar a interação entre os diferentes
trabalhadores (ou subconjuntos deles), capturando assim dependências e sinergias.

Os valores m são determinados com base no subconjunto dos trabalhadores que
estão contribuindo para a produção total, como mostrado na Figura 2.22.
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Figura 2.22: Exemplo de cálculo de produtividade com medida fuzzy

Dado o conjunto N = {Leo, Kim, Eva} = {1, 2, 3}, calculamos a produção total
em um dia de trabalho com base nos subconjuntos formados pelos trabalhadores. O
tempo de trabalho de cada trabalhador é representada na Figura 2.23 pelos valores
xi, com x1 = 0.4, x2 = 0.3 e x3 = 0.6.

Figura 2.23: Exemplo de cálculo de produção com a Integral de Cho-
quet

Dos dados de entrada temos:

x(1) = 0.3, x(2) = 0.4, x(3) = 0.6

Os subconjuntos A(i) associados são:

A(1) = {(1), (2), (3)} = {1, 2, 3}, A(2) = {(2), (3)} = {1, 3}, A(3) = {3}

A medida fuzzy m atribuída a cada um desses subconjuntos é:
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m({3}) = 0.1, m({1, 3}) = 0.8, m({1, 2, 3}) = 1.0

Agora, aplicamos a fórmula da Integral de Choquet:

Cm(x) = (x(1) − 0)m(A(1)) + (x(2) − x(1))m(A(2)) + (x(3) − x(2))m(A(3))

Substituindo os valores:

Cm(x) = (0.3− 0) · 0.1 + (0.4− 0.3) · 0.8 + (0.6− 0.4) · 1.0

Realizando os cálculos:

Cm(x) = 0.3 · 1.0 + 0.1 · 0.8 + 0.2 · 0.1

Cm(x) = 0.3 + 0.08 + 0.02 = 0.4

Portanto, a produção total avaliada usando a Integral de Choquet é 0.4, o que
reflete a interação entre os trabalhadores e suas contribuições individuais.

Conclusão

A integral de Choquet discreta como operador de agregação é uma ferramenta po-
derosa para capturar relações de dependência e interação entre variáveis, oferecendo
uma alternativa flexível e robusta aos operadores tradicionais. Sua aplicabilidade
em contextos de alta complexidade a torna essencial para áreas que requerem uma
análise detalhada das interações entre variáveis.





Capítulo 3

SISTEMA FUZZY
MULTI-RÓTULO
TAKAGI-SUGENO-KANG
CHOQUET (ML TSKC-FS)

Neste capítulo, apresentamos o funcionamento do modelo ML-TSKC FS também
explicaremos como cada componente do modelo contribui para o processo de infe-
rência fuzzy e como a integral de Choquet é utilizada para capturar as interações
complexas entre as variáveis. Além disso, descreveremos o fluxo de dados através das
diferentes camadas do modelo, desde a fuzzificação das entradas até a ponderação
dos resultados finais.

3.1 ARQUITETURA DO MODELO ML-TKSC FS

A arquitetura ML-TKSC FS mantém os princípios fundamentais dos sistemas de in-
ferência fuzzy TSK (Takagi-Sugeno-Kang) (por exemplo, [Tomohiro e Sugeno 1985;
Sugeno e Kang 1986; Sugeno e Kang 1988]), mas aprimora as capacidades de mo-
delagem. A estrutura proposta incorpora a integral discreta de Choquet para a
determinação do peso das regras, substituindo o operador de produto utilizado na
arquitetura original ML-TKS FS (Sistema Fuzzy Multi-Rótulo Takagi-Sugeno-Kang)

57
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introduzida em [Lou et al. 2021]. Esta generalização permite que o modelo consi-
dere de forma mais precisa as interações entre os atributos. Além disso, melhora a
capacidade do modelo de captar interações complexas dos dados, resultando em um
desempenho superior em sistemas multi-rótulo, como explicamos a seguir.

O ML-TKSC FS é construído a partir de K regras fuzzy, cada uma estabelecendo
uma relação entre um conjunto de condições de entrada e uma correspondente função
linear de saída. A k-ésima regra é representada como:

Rk : SE x é Bk, ENTÃO y = Lk(x, pk), k = 1, 2, . . . , K. (3.1)

Aqui, x = (x1, . . . , xA) representa o vetor de entrada, Bk = Bk
1 × . . . × Bk

A são
os conjuntos fuzzy, e Lk(x, pk) define a função linear de saída, com parâmetros pk

ponderando linearmente as contribuições de cada variável de entrada xj .
Na Figura 3.1, o modelo ML-TSKC FS é ilustrado, compreendendo cinco cama-

das distintas. A primeira camada lida com a fuzzificação, enquanto as camadas 2, 3
e 4 formam o núcleo com as regras base, abrangendo tanto os componentes antece-
dentes quanto consequentes. A quinta e última camada realiza uma agregação das
saídas de cada regra.

Figura 3.1: Uma visão geral do modelo ML TSKC-FS, destacando a
camada modificada.

A seguir, explicamos e discutimos cada camada representada na Figura 3.1.

3.1.1 Camada 1: O processo de fuzzificação

O primeiro passo no processo de inferência fuzzy concentra-se na fuzzificação dos
dados de entrada, onde as informações quantitativas são convertidas em formas
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qualitativas. Essa conversão é essencial, pois permite que o sistema fuzzy lide com
a incerteza e a imprecisão dos dados do mundo real, algo que não seria possível
com valores exatos. No modelo ML TSKC-FS, essa conversão é realizada usando
conjuntos fuzzy Bk

j .
Na estrutura do modelo ML-TSKC FS, cada Bk

j está associado a regras espe-
cíficas e suas respectivas funções de pertinência µBk

j
. Essas funções de pertinência

desempenham um papel crucial ao medir o grau de relevância de um valor de entrada
xj dentro de um conjunto fuzzy Bk

j , determinando o quanto a entrada ativa a regra
Rk. Para os subconjuntos fuzzy Bk

j de um universo U , suas funções de pertinência
são definidas, para todos xj ∈ U , por:

µBk
j

(xj) = exp

−
(
xj − vk

j

)2

2
(
δk

j

)2

 , (3.2)

onde vk
j e δk

j são, respectivamente, o centro e o desvio padrão da função Gaussi-
ana. Esses parâmetros são calculados via o algoritmo Fuzzy C-Means (FCM) [Bezdek
1981], que ajusta a posição do centro vk

j e a dispersão δk
j de acordo com os dados de

entrada.

Figura 3.2: Gráfico da função Gaussiana, onde v é o centro e δ é
o desvio padrão. O valor de pertinência µ decresce conforme x se

afasta de v.

A função Gaussiana ilustrada na Figura 3.2 representa o comportamento de per-
tinência fuzzy: o ponto v é o centro do conjunto fuzzy, onde o grau de pertinência
é máximo (µ = 1). À medida que x se afasta de v, o valor de µ diminui exponenci-
almente, refletindo que o valor xj está menos associado ao conjunto fuzzy. O desvio
padrão δ determina a dispersão da curva, ou seja, quão rapidamente a pertinência
decresce.

Exemplo 7 (Cálculo da Função de Pertinência). Considere os seguintes parâmetros
para um conjunto fuzzy:

vk
j = 5, δk

j = 1
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Para uma entrada xj = 5, temos:

µBk
j
(5) = exp

(
−(5− 5)2

2× 12

)
= exp(0) = 1

Nesse caso, xj = 5 tem grau de pertinência máximo. Agora, para uma entrada
xj = 4, temos:

µBk
j
(4) = exp

(
−(4− 5)2

2× 12

)
= exp

(
−1

2

)
≈ 0.606

Aqui, xj = 4 está mais distante do centro vk
j = 5, e, portanto, tem uma pertinência

menor, mas ainda significativa.

Figura 3.3: O processo de fuzzificação.

A Figura 3.3 mostra como uma entrada x1 é processada no modelo ML-TSKC
FS. O valor x1 é fuzzificado pelas funções de pertinência µB1

1
(x1) e µB1

2
(x1), que

atribuem diferentes graus de pertinência ao valor, dependendo da proximidade de
x1 em relação aos centros dos conjuntos fuzzy B1

1 e B1
2 . Esse processo converte

uma entrada precisa em uma representação fuzzy, permitindo que o sistema fuzzy
manipule a incerteza associada à entrada.

Este processo é essencial para a operação do sistema fuzzy, pois permite que
os dados reais sejam utilizados em inferências lógicas que capturam as nuances e
incertezas do comportamento dos dados.

3.1.2 Camada 2: Determinação do peso da regra fuzzy pela sua
força de ativação

O peso da regra desempenha um papel importante no sistema de inferência fuzzy
TSK, sendo ativado quando todas as cláusulas antecedentes de uma regra fuzzy são
satisfeitas. A força de ativação é definida como a quantificação da força da premissa
de uma regra com base em um conjunto de valores de entrada, e é derivada das
forças de pertinência dos valores de entrada correspondentes aos antecedentes da
regra.

A força de ativação desempenha um papel crucial no sistema de inferência fuzzy,
pois ela quantifica o grau de satisfação dos antecedentes de uma regra fuzzy. Quanto



3.1. ARQUITETURA DO MODELO ML-TKSC FS 61

maior a força de ativação, maior será a confiança de que a regra em questão deve ser
ativada, o que afeta diretamente o valor da saída do sistema. Dessa forma, a força
de ativação determina a relevância de cada regra fuzzy no cálculo da resposta final
do sistema.

Em geral, a força de ativação de uma regra fuzzy Rk, com base em uma entrada
x, é definida por meio de uma função de agregação A : [0, 1]A → [0, 1], que combina
os graus de pertinência dos antecedentes para obter a força de ativação como:

µk
A(x) = A

(
µBk

1
(x1) , . . . , µBk

A
(xA)

)
. (3.3)

Nesse contexto, µBk
j
(xj) representa a força de pertinência do valor de entrada xj

para o antecedente Bk
j da regra Rk, sendo que a função de agregação A desempenha

um papel crucial ao integrar essas forças para calcular a força de ativação final.
A função de agregação A é responsável por combinar os graus de pertinência

presentes no antecedente de uma regra fuzzy, resultando em uma única força de
ativação. Existem várias maneiras de definir essa função de agregação, como mínimo,
produto, soma, média, ou até métodos mais complexos como a Integral de Choquet.
A escolha da função de agregação pode impactar significativamente os resultados,
já que cada método trata de forma diferente a combinação das pertinências.

Figura 3.4: O processo da ativação das regras µk
A(x).

A Figura 3.4 ilustra o processo de ativação de uma regra. No topo, temos
os antecedentes da regra fuzzy, que são processados pelas funções de pertinência
µBk

j
(xj). Essas funções atribuem graus de pertinência a cada entrada xj , dependendo

da sua proximidade com os centros dos conjuntos fuzzy Bk
j . Em seguida, os valores

resultantes dessas pertinências são agregados por uma função A, resultando na força
de ativação µk

A(x), que é usada para determinar o impacto da regra fuzzy no sistema.
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Trabalhos relacionados sobre a determinação das forças de ativação de
regras fuzzy

Na literatura (por exemplo, [Jang e Jyh-Shing 1993; Kim e Kasabov 1999; Kasabov,
Song e Qun 2002; Lou et al. 2021]), as funções de agregação A mais comuns na são
as t-normas Mínimo e Produto (que também são funções de sobreposição [Bustince,
Mesiar et al. 2021]). O Mínimo é usado quando a semântica da regra é “e”, impli-
cando que todas as cláusulas antecedentes devem ser verdadeiras para que a regra
seja ativada. O Produto é utilizado quando a semântica da regra é “e também”,
indicando que as cláusulas antecedentes devem ser verdadeiras em conjunto, não
individualmente.

Um dos trabalhos pioneiros que exploraram diferentes técnicas de agregação nos
antecedentes, além das tradicionais, foi apresentado por [Uebele, Shigeo e Ming-
Shong 1995], que introduziu um tratamento detalhado dos operadores de inferência
fuzzy usados para calcular o grau de pertinência das regras fuzzy em sistemas de
classificação. Esta abordagem é baseada em três principais funções de agregação,
a saber, a t-norma Mínimo, a t-conorma Máximo e a Soma (de fato, a média arit-
mética), cada uma desempenhando um papel distinto no tratamento dos dados de
entrada.

Utilizando o Mínimo, a força de ativação de uma regra fuzzy Rk, com base em
uma entrada x, é dada por:

µk
min(x) = min

(
µBk

1
(x1), . . . , µBk

A
(xA)

)
, (3.4)

selecionando o menor grau de pertinência entre todos os fornecidos pelas funções de
pertinência para uma regra específica. Embora seja eficaz para garantir a pertinência
dentro dos limites da classe, essa abordagem pode desconsiderar informações valiosas
sobre as relações dos dados de teste com outras regiões.

Agora, o Máximo identifica a regra fuzzy com o maior grau de pertinência para
um dado vetor de entrada x:

µk
max(x) = max

(
µBk

1
(x1), . . . , µBk

A
(xA)

)
. (3.5)

Essa abordagem também pode desconsiderar informações valiosas sobre as relações
dos dados de teste com outras fronteiras de regiões.

A Soma agrega os graus de pertinência, simulando a inferência de redes neurais
e avaliando as distâncias médias dos dados de teste para os hiperplanos da região
fuzzy, obtendo a força de ativação de uma regra fuzzy Rk com base em uma entrada
x por:

µk∑(x) = 1
A

A∑
j=1

µBk
j
(xj). (3.6)
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Essa soma fornece um grau de pertinência composto que pode refletir de maneira
mais adequada a proximidade dos dados de teste à região de interesse.

Assim, essa abordagem de [Uebele, Shigeo e Ming-Shong 1995] ilustra a comple-
xidade da classificação, destacando a necessidade de operadores de inferência que
possam lidar adequadamente com incerteza e ambiguidade.

Na pesquisa realizada por [Bezdek, Keller et al. 1999] sobre sistemas fuzzy, é
oferecida uma análise do processo de determinação do peso das regras em bases
de regras fuzzy, com foco especial no lado esquerdo das regras, que abrange os
componentes antecedentes. Nesta pesquisa, o cálculo da força de ativação de uma
regra fuzzy Rk com base no vetor de entrada x, é feito por

µk
T (x) = T

(
µBk

1
(x1), . . . , µBk

A
(xA)

)
(3.7)

onde T : [0, 1]A → [0, 1] é uma t-norma. Observe que tanto o Mínimo quanto o
Produto são t-normas. No entanto, outras t-normas diferentes podem ser usadas
nesta abordagem.

A abordagem de [Chung et al. 2006] para o cálculo da força de ativação das regras
no Sistema de Inferência Fuzzy Adaptativo Takagi-Sugeno-Kang (ATSFIS) destaca
a flexibilidade dos sistemas fuzzy para modelar interações complexas entre variáveis
de entrada. Ao utilizar uma função de pertinência do tipo sigmoide juntamente
com o operador ou interativo, o sistema é capaz de capturar nuances nas relações
entre as variáveis, o que é especialmente útil em aplicações onde as relações não
são facilmente modeladas por operadores tradicionais de t-norma. Então, a força de
ativação de uma regra fuzzy Rk com base no vetor de entrada x é calculada como:

µk
∗(x) = µBk

1
(x1) ∗ µBk

2
(x2) ∗ . . . ∗ µBk

A
(xA), (3.8)

onde µBk
i
(xi) denota uma função de pertinência do tipo sigmoide para a i-ésima va-

riável de entrada na k-ésima regra, e ∗ : [0, 1]2 → [0, 1] é um operador fuzzy específico
definido, para todos x, y ∈ [0, 1], por:

x ∗ y = xy

(1− x)(1− y) + xy
. (3.9)

Este operador, chamado ou interativo, conforme comentado por [Chung et al.
2006], fornece uma maneira inovadora de calcular a interação entre as funções de
pertinência das variáveis de entrada. Ao contrário dos operadores tradicionais de t-
norma, que geralmente assumem o mínimo ou o produto das funções de pertinência,
o operador ou interativo permite uma representação mais rica da interação entre
variáveis, levando em consideração sua coexistência e o grau de interação entre elas.

O estudo de [Han, Sun e Fan 2008] explora a estrutura e a funcionalidade de
uma rede neural fuzzy aprimorada com base no modelo Takagi-Sugeno (T -S). Ele
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enfatiza a metodologia para o cálculo da força de ativação e a importância das regras
nos sistemas de inferência fuzzy. Primeiro, para cada regra Rk, o parâmetro αk é
calculado usando a t-norma do mínimo ou do produto, como:

αk(x) = min
(
µBk

1
(x1), . . . , µBk

A
(xA)

)
(3.10)

αk(x) =
∏(

µBk
1
(x1), . . . , µBk

A
(xA)

)
. (3.11)

A importância da regra, denotada por wk ≥ 1, atua como um peso atribuído
a cada regra Rk, representando sua relevância ou confiança dentro do sistema de
regras. Essa metodologia permite diferenciar a influência de cada regra no resultado
do sistema de inferência, refletindo a confiança ou prioridade de certas regras sobre
outras. Essa diferenciação é crucial para ajustar o sistema de inferência a fim de
capturar nuances específicas do domínio da aplicação. Assim, no modelo de [Han,
Sun e Fan 2008], a força de ativação de uma regra fuzzy Rk com base no vetor de
entrada x é calculada como:

µk(x) = αk(x)wk(x). (3.12)

Assim, os trabalhos citados acima não apenas esclarecem a importância de selecionar
operadores de inferência apropriados para sistemas de regras fuzzy, mas também
estabelecem uma base comparativa para a implementação de métodos avançados de
agregação, como nossa proposta: a integral discreta de Choquet. Esse avanço abre
caminho para sistemas de inferência fuzzy mais precisos e adaptativos, capazes de
lidar com a complexidade e ambiguidade dos dados do mundo real de forma eficiente.

Nossa proposta de aplicação da integral de Choquet no ML-TSKC FS

Sistemas de regras fuzzy são ferramentas poderosas para modelar relações complexas.
No entanto, os métodos tradicionais de agregação em regras fuzzy frequentemente
assumem independência entre os atributos antecedentes (a parte SE). Essa limitação
pode prejudicar a capacidade do sistema de capturar cenários do mundo real onde
os atributos podem interagir e influenciar uns aos outros.

Nosso trabalho aborda essa limitação ao introduzir a integral de Choquet para
o cálculo da força de ativação das regras fuzzy. Essa abordagem é inspirada pelos
avanços recentes nos consequentes de regras fuzzy utilizando a integral discreta de
Choquet (e algumas generalizações), conforme demonstrado em [Lucca, Sanz, G.
Dimuro et al. 2018; Lucca, G. P. Dimuro et al. 2019; Marco-Detchart et al. 2021;
Wieczynski, Fumanal-Idocin et al. 2022; Wieczynski, Lucca et al. 2023; Ferrero-
Jaurrieta et al. 2023; Kim e Lee-Chae 2023; Riaz et al. 2023; Hongjuan Wang, Liu
e Zhao 2023; Wang et al. 2024; Bozyiğit et al. 2024; Zhang, Mesiar e Pap 2024],
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que exploraram sua aplicação em consequentes de regras fuzzy em vários contex-
tos (por exemplo, processamento de imagens, Long Short-Term Memory, tomada
de decisão multicritério e TOPSIS, classificação, interfaces cérebro-computador, re-
conhecimento de padrões, gestão de projetos e análise de riscos). Portanto, nosso
trabalho dá um passo significativo ao aproveitar as capacidades da integral de Cho-
quet nos antecedentes das regras (parte SE).

A integral de Choquet é uma ferramenta matemática poderosa que vai além dos
operadores tradicionais de agregação (como mínimo, máximo ou soma) utilizados em
sistemas de inferência fuzzy. Enquanto esses operadores se concentram nos graus
de pertinência individuais das variáveis, a integral de Choquet, por ser definida em
termos de uma medida fuzzy, captura a relação entre os atributos, considerando a
importância relativa de cada combinação de variáveis [Lucca, Sanz, Dimuro et al.
2019; Wieczynski, Dimuro et al. 2020].

Então, a força de ativação de uma regra fuzzy Rk com base no vetor de entrada
x, utilizando a integral de Choquet Cm : [0, 1]A → [0, 1] com respeito a uma medida
fuzzy m como a função de agregação A da Eq.(3.3), é dada por:

µk
Cm

(x) = Cm

(
µBk

1
(x1), . . . , µBk

A
(xA)

)
, (3.13)

onde µBk
i

denota a força de ativação da regra k para cada atributo xi na regra k.
Neste estudo, exploramos várias medidas fuzzy integradas no modelo ML-TKSC

FS. Como mencionado anteriormente, essas medidas são fundamentais para modelar
as interações entre os atributos, influenciando diretamente o processo de classifica-
ção. Considerando um conjunto N = 1, . . . , n e um subconjunto I ⊆ N , juntamente
com um vetor de pesos associado à medida ponderada, as medidas fuzzy selecionadas
são definidas na Tabela 2.10.

A seleção dessas medidas é motivada por sua aplicabilidade e versatilidade na
modelagem da influência dos atributos na classificação, conforme destacado por [H.
Bustince et al. 2016]. Cada medida oferece uma abordagem distinta para quanti-
ficar e integrar características relevantes, enriquecendo o processo de agregação e
aprimorando o desempenho do modelo ML-TKSC FS. Uma breve discussão de cada
medida é dada a seguir.

• Medida Uniforme (mU ): distribui igual importância a todos os atributos, sendo
útil na ausência de conhecimento prévio sobre a relevância dos atributos. Ela
favorece uma agregação equitativa, o que pode ser limitado em casos onde
alguns atributos são mais informativos.

• Medida Relativa (mR): valoriza os atributos com base em sua ordem, assu-
mindo que os atributos de maior índice são mais relevantes. Isso pode au-
mentar a precisão quando uma hierarquia de importância entre os atributos é
conhecida.
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• Medida do Produto (mΠ): enfatiza a combinação de atributos de alta ordem,
potencialmente capturando interações complexas essenciais para a classifica-
ção.

• Medida de Potência (mp): modula a influência do tamanho do conjunto de atri-
butos, permitindo ajustes na sensibilidade do modelo ao número de atributos
envolvidos.

• Média Ponderada (mw): oferece flexibilidade ao permitir pesos específicos para
cada atributo, refletindo conhecimento ou hipóteses sobre sua importância
relativa.

Cada medida traz uma perspectiva única para interpretar e modelar a importância
dos atributos em contextos de classificação multi-rótulo. A seleção dessas medidas
é guiada tanto pelo conhecimento do domínio quanto pela experimentação, visando
otimizar a combinação de informações no ML-TKSC FS para alcançar um desem-
penho ideal.

3.1.3 Camada 3: Normalização

Esse processo envolve dividir a força de ativação de cada regra pela soma das forças
de ativação de todas as regras ativadas para a entrada atual. Essa operação resulta
na forma normalizada da força de ativação da regra Rk, com base no vetor de entrada
x, dada por:

µ̃k
Cm

(x) =
µk
Cm

(x)∑K
i=1 µi

Cm
(x)

. (3.14)

Aqui, µ̃k
Cm

(x) representa a proporção da força de ativação da regra Rk em relação à
força de ativação total das regras ativadas para a entrada x.

3.1.4 Camada 4: Contribuição da regra (consequente)

O consequente, também conhecido como a parte então de uma regra fuzzy, desem-
penha um papel crucial no modelo ML-TSKC FS ao determinar a contribuição da
regra para a saída final para uma determinada entrada. A contribuição da k-ésima
regra Rk, para o vetor de entrada x = (x1, . . . , xA) e o vetor de parâmetros da regra
pk = (pk

0, . . . , pk
A), no modelo ML-TSKC FS, é dada por:

Lk(x, pk) = pk
0 + pk

1x1 + · · ·+ pk
AxA, k = 1, . . . , K (3.15)

onde:

• pk
0 é o termo constante associado à k-ésima regra. Ele atua como um termo

de viés, influenciando a saída mesmo quando todas as variáveis de entrada são
zero.
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• pk
j denota os coeficientes lineares vinculados à j-ésima variável de entrada xj

dentro da k-ésima regra. Ele essencialmente determina o peso ou a influência
de cada variável de entrada na saída da regra.

Essencialmente, a Eq.(3.15) representa uma combinação linear das variáveis de
entrada, ponderada pelos seus coeficientes correspondentes, juntamente com um
termo constante. O valor resultante indica a saída à qual a k-ésima regra se aplica
para a entrada dada.

3.1.5 Camada 5: Ponderação

Na ponderação, o modelo ML-TSKC FS combina as contribuições das regras fuzzy,
ponderadas pelas suas respectivas forças de ativação, para obter a saída final. Essa
etapa permite agregar a informação proveniente de todas as regras de forma ponde-
rada, refletindo a relevância de cada regra para a entrada dada.

A saída de uma instância x no modelo ML-TSKC FS pode ser expressa como
uma combinação ponderada das saídas parciais de todas as regras Rk, dada por:

ŷ =
K∑

k=1
µ̃k
Cm

(x)Lk(x, pk),

onde:

• µ̃k
Cm

(x): representa a força de ativação normalizada da k-ésima regra fuzzy para
a entrada x. Esse valor atua como um peso, refletindo o grau de importância
da regra Rk para a situação atual.

• Lk(x, pk): representa a contribuição linear da regra Rk para a saída final, onde
pk é o vetor de parâmetros específicos dessa regra.

Assim, cada regra contribui para a saída ponderada de acordo com sua relevância,
determinada por µ̃k

Cm
(x).
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Figura 3.5: Ilustração da agregação das regras para obter a saída
final.

A Figura 3.5 ilustra o processo de agregação das regras fuzzy. Cada linha re-
presenta uma regra Rk, que é ativada de acordo com a força de ativação µ̃k

Cm
(x). A

contribuição de cada regra é dada pela função Lk(x, pk), e todas as contribuições
são somadas (Σ) para formar a saída final ŷ. Esse processo reflete a soma ponderada
das saídas das regras, onde cada regra contribui de acordo com sua relevância para
a entrada.

3.2 O MÉTODO DE APRENDIZAGEM

O processo de aprendizagem do modelo ML-TSKC FS é estruturado em duas fa-
ses, cada uma projetada para otimizar as capacidades do modelo. Na primeira
fase, um algoritmo de agrupamento Fuzzy C-Means [Bezdek, Ehrlich e Full 1984] é
utilizado para estabelecer funções de pertinência que refletem com precisão as ca-
racterísticas de distribuição dos dados de entrada. Esta etapa é fundamental para
garantir que as funções de pertinência estejam bem ajustadas à estrutura natural
dos dados.

Uma vez que as funções de pertinência são mapeadas de forma eficaz, o modelo
passa para a segunda fase, que se concentra no aprendizado e refinamento dos
parâmetros do modelo por meio de otimização. Esta fase é guiada por uma função
objetivo que integra três componentes essenciais, cada um desempenhando um papel
vital no processo de aprendizagem do modelo:

• Termo de Perda por Regressão: Este componente garante que o modelo cap-
ture com precisão as nuances e padrões presentes nos dados de treinamento,
alinhando as previsões do modelo de forma próxima aos resultados observados.
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• Termo de Regularização: Este termo penaliza modelos excessivamente com-
plexos para evitar o sobreajuste e manter a generalização do modelo. Ele
incentiva a simplicidade e reduz o risco de o modelo se tornar muito ajustado
aos dados de treinamento.

• Termo de Correlação: Incorporando a correlação entre os rótulos, este termo
extrai informações adicionais que aprimoram a capacidade do modelo de fazer
previsões mais informadas, especialmente em contextos de múltiplos rótulos.

A otimização desta função objetivo é realizada utilizando o algoritmo de descida
de gradiente proximal. O algoritmo ajusta iterativamente os parâmetros do modelo,
refinando-os para minimizar a função objetivo. Através deste processo iterativo, o
modelo aprende os melhores parâmetros possíveis, ao mesmo tempo que alcança um
equilíbrio entre a precisão do ajuste, a simplicidade do modelo e a exploração das
correlações entre os rótulos. Isso resulta em um desempenho robusto e confiável
tanto nos dados de treinamento quanto nos dados não vistos.

3.2.1 Fase 1 - Encontrando as saídas desejadas usando Fuzzy C-
Means (FCM)

O algoritmo Fuzzy C-Means é uma extensão do clássico algoritmo de clustering,
projetado para lidar com a incerteza e a sobreposição entre grupos. Ao contrário de
métodos como K-Means, que forçam cada ponto de dado a pertencer exclusivamente
a um cluster, o FCM permite que cada ponto tenha um grau de pertinência associado
a múltiplos clusters. Isso torna o FCM uma escolha ideal para sistemas fuzzy, onde
a incerteza é uma parte inerente do modelo.

Para iniciar a primeira fase, é essencial definir o conjunto de dados de treinamento
que servirá como base para o processo de agrupamento. Seja DT R o conjunto de
dados de treinamento, definido da seguinte forma:

DT R = {(x1, y1), . . . , (xN , yN )} .

O conjunto de dados de treinamento DT R consiste em N pares de vetores de
entrada xi, que representam os pontos de dado no espaço de entrada, e suas saídas
associadas yi, que correspondem às classes ou rótulos desejados. O objetivo do FCM
é identificar os centros dos clusters com base nos pontos de entrada, ajustando-os
iterativamente representar adequadamente a distribuição dos dados.

Processo de Inicialização e Iteração

O processo começa com a inicialização aleatória dos centros dos clusters para os
pontos de dados {x1, . . . , xN}, e refina iterativamente esses centros. A cada itera-
ção, o FCM calcula o grau de pertinência uij para cada ponto de dado em relação a
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cada cluster, utilizando esses graus para atualizar os centros dos clusters. A natu-
reza iterativa do FCM garante que os centros finais dos clusters vj e as respectivas
dispersões σj reflitam com precisão a distribuição dos dados.

Inicialmente, os centros dos clusters vi são atribuídos aleatoriamente. A cada
iteração, os centros dos clusters são atualizados com base no grau de pertinência uij ,
que reflete a proximidade de cada ponto xi a um centro vj . Após várias iterações, os
clusters convergem para uma posição final que reflete melhor a estrutura dos dados.

Figura 3.6: Representação gráfica do Fuzzy C-Means (FCM).

A Figura 3.6 ilustra o processo de agrupamento fuzzy. No gráfico à esquerda,
as linhas concêntricas indicam os graus de pertinência de cada ponto de dado aos
centros dos clusters. Quanto mais próximo um ponto está do centro, maior o grau
de pertinência. O gráfico à direita mostra uma representação tridimensional dos
clusters e suas funções de pertinência Gaussianas, com σj controlando a largura de
cada Gaussiana.

Cálculo do grau de pertinência (uij), centros dos clusters (vj) e desvio
padrão( σj)

Em cada iteração, o grau de pertinência uij de cada ponto de dado xi ao cluster j

é calculado da seguinte forma:

uij = 1∑K
k=1

(
∥xi−vj∥
∥xi−vk∥

) 2
m−1

onde vj é o centro do cluster e m é o parâmetro de fuzzificação. O grau de
pertinência de um ponto xi ao cluster j indica o quão próximo o ponto está do
centro vj . Valores maiores de uij indicam maior pertencimento ao cluster.

Os centros dos clusters obtidos pelo FCM são calculados como:
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vj =
∑N

i=1 um
ij · xi∑N

i=1 um
ij

Os centros dos clusters vj são calculados como a média ponderada dos pontos
de dado xi, onde os pesos são os graus de pertinência uij . O desvio padrão σj para
cada cluster é determinado com base na distância média dos pontos de dados ao
centro do cluster, ponderada pelos graus de pertinência, conforme a fórmula:

σ2
j =

∑N
i=1 um

ij · ∥xi − vj∥2∑N
i=1 um

ij

Esse valor quantifica a dispersão dos pontos em torno do centro do cluster e
define a largura das funções de pertinência Gaussianas. Quanto maior σj , maior a
variabilidade nos dados, resultando em funções de pertinência mais amplas.

Esses resultados são fundamentais para definir as funções de pertinência Gaus-
sianas que o modelo fuzzy utilizará para representar as relações entre os dados de
entrada de maneira fuzzy. Isso permite que o modelo aproveite as informações es-
truturais capturadas durante o agrupamento para um aprendizado mais preciso e
robusto. Os centros dos clusters vj e os desvios σj serão usados na próxima etapa
para determinar as funções de pertinência fuzzy que serão aplicadas nas regras do
sistema.

Agora, prosseguimos para determinar as saídas desejadas utilizando as funções de
pertinência contidas nos pesos das regras normalizadas µ̃k

Cm
definidas em Eq.(3.14).

Essas funções são parametrizadas por vk
j e δk

j = hσk
j , onde h desempenha um papel

crucial na escala do desvio padrão σk
j obtido a partir do algoritmo FCM para cada

regra Rk. O valor de h não é fixo. Em vez disso, ele é tratado como um hiperparâ-
metro que é ajustado por meio de um processo de busca em grade, junto com outros
hiperparâmetros importantes. Essa busca em grade permite a exploração sistemá-
tica de diferentes valores de h, otimizando o desempenho do modelo ao identificar a
melhor combinação de hiperparâmetros.

Para uma instância arbitrária (x, y) do conjunto de treinamento DT R, quando a
entrada x é inserida no modelo ML-TSKC-FS, a saída ŷ é determinada da seguinte
forma:

ŷ =
K∑

k=1
µ̃k
Cm

(x) Lk
(
x, pk

)
,

onde µ̃k
Cm

(x) representa a força de ativação da k-ésima regra fuzzy e Lk
(
x, pk

)
é a função linear associada a essa regra fuzzy. A saída ŷ é calculada como uma
combinação ponderada das regras fuzzy, onde µ̃k

Cm
(x) pondera a contribuição de

cada regra fuzzy. A função linear Lk
(
x, pk

)
é expressa como:
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Lk
(
x, pk

)
= (pk)T

(
1
x

)
,

onde pk é o vetor de coeficientes da função linear Lk e x é o vetor de entrada de
dimensão A. Assim, a saída ŷ é uma soma ponderada das saídas lineares de cada
regra fuzzy. Para ilustrar, o vetor pk contém os coeficientes que definem a função
linear associada a cada regra fuzzy, determinando a contribuição da regra para a
saída final. Os componentes de x representam as variáveis de entrada do sistema.

Podemos reescrever a equação da saída ŷ usando a função gk(x), que combina
a força de ativação fuzzy µ̃k

Cm
(x) e a função linear da regra fuzzy Rk, como:

ŷ =
K∑

k=1
(pk)T gk(x),

onde gk(x) =
(

µ̃k
Cm

(x)
(

1
x

))
. A função gk(x) encapsula a contribuição de

cada regra fuzzy para a saída final, permitindo que a saída ŷ seja expressa como
uma soma ponderada das funções gk(x).

Seja g(x) = (g1(x), g2(x), . . . , gK(x))T , então a saída ŷ pode ser reescrita de
forma compacta como:

ŷ =
K∑

k=1
(pk)T gk(x) = P T g(x),

onde:

g(x) =


g1(x)
g2(x)

...
gK(x)

 , P T =
(
(p1)T (p2)T . . . (pK)T

)
.

Portanto, encontramos que ŷ = P T g(x), ou seja, para a entrada dada x, a saída
do modelo ML-TSKC-FS é uma função linear dos parâmetros P . Agora, para todas
as entradas x1, x2, . . . , xN , as saídas correspondentes são calculadas como:

ŷi = P T g(xi), i = 1, 2, . . . , N.
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Figura 3.7: Representação matricial da saída do modelo ML-TSKC-
FS.

A Figura 3.7 ilustra o processo de cálculo da saída de forma matricial. A matriz
de entrada X contém os vetores de entrada x1, x2, . . . , xN , e a matriz de saída Y

contém os vetores de saída correspondentes y1, y2, . . . , yN . O modelo ML-TSKC-FS
aplica uma função f parametrizada pelos vetores P e g(x), resultando nas saídas
previstas ŷ1, ŷ2, . . . , ŷN . Essa representação visual destaca a relação entre as entra-
das e as saídas através do cálculo matricial.

Saída do modelo Ŷ

Combinamos todas as saídas individuais ŷ1, ŷ2, . . . , ŷN em uma única matriz Ŷ ,
onde:

Ŷ = (ŷ1, ŷ2, . . . , ŷN ) = P T (g(x1) g(x2) . . . g(xN ))

ou simplesmente:
Ŷ = P T G,

onde G = (g(x1) g(x2) . . . g(xN ).
O objetivo do treinamento é minimizar a diferença entre Ŷ e a matriz de saídas

verdadeiras Y , ajustando os parâmetros P para garantir que as previsões estejam o
mais próximo possível dos valores reais.

3.2.2 Fase 2 - Encontrando os parâmetros das partes consequentes
para minimizar o erro da saída da rede

Com base na análise acima, consideramos a matriz de parâmetros consequentes P

como a variável independente da função objetivo Of (P ) para o ML-TSKC FS, que
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tem a seguinte forma:

Of (P ) = 1
2
∥∥∥P TG− Y

∥∥∥2

F
+ β ∥P ∥1 + α

2 Tr
(
RP TP

)
, (3.16)

onde
∥∥∥P TG− Y

∥∥∥2

F
é a perda por regressão e || · ||F é a norma de Frobenius; ∥P ∥1

é um termo de regularização Tr
(
RP TP

)
é o termo que contém a correlação entre

os rótulos. α e β são dois hiperparâmetros.
Agora, como a função objetivo do ML-TSKC-FS contém a norma L1 de P , que

é não diferenciável em relação a P , não podemos obter diretamente os gradientes
em P para otimização. Técnicas eficientes de otimização foram desenvolvidas para
resolver esse problema comum em métodos baseados na norma L1. Neste trabalho,
utilizamos o método de Descida de Gradiente Proximal [Combettes e Wajs 2005], que
é empregado para resolver a matriz P do ML-TSKC-FS. O processo de otimização
é descrito a seguir.

Os parâmetros ótimos de nosso modelo são obtidos minimizando a Eq. (3.16) e
podem ser reescritos como:

P ∗ = arg min
P

1
2
∥∥∥P TG− Y

∥∥∥2

F
+ β ∥P ∥1 + α

2 Tr
(
RP TP

)
= arg min

P
f(P ) + β ∥P ∥1 ,

(3.17)

com
f(P ) = 1

2
∥∥∥P TG− Y

∥∥∥2

F
+ α

2 Tr
(
RP TP

)
. (3.18)

Como tanto f(P ) quanto a norma L1 são convexos, e β > 0, o problema de
otimização na Eq. (3.17) também é convexo. Além disso, a função na Eq. (3.18) é
convexa e diferenciável,

∇f(P ) = GGT P −GY T + αPR. (3.19)

Além disso, f(P ) satisfaz

∥∇f (P1)−∇f (P2)∥ ≤ Lf ∥P1 − P2∥ , ∀P1, P2, (3.20)

onde
Lf =

√
2σ2

max (GGT ) + 2σ2
max(αR), (3.21)

e σmax(·) indica o maior componente da matriz.
Assim, a Eq. (3.17) pode ser resolvida iterativamente. Para a t-ésima iteração,

dado o ponto fixo P (t), f(P ) pode ser aproximada usando uma expansão de Taylor
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de segunda ordem:

f̂(P ) ≃ f
(
P (t)

)
+
〈
∇f

(
P (t)

)
, P − P (t)

〉
+ Lf

2
∥∥∥P − P (t)

∥∥∥2

F

= Lf

2

∥∥∥∥∥P −
(

P (t) − 1
Lf
∇f

(
P (t)

))∥∥∥∥∥
2

F

+ C0

(3.22)

onde C0 é uma constante independente de P . Portanto, para a (t+1)-ésima iteração,
a Eq. (3.17) pode ser aproximada por:

P t+1 = arg min
P

f̂(P ) + β∥P ∥1

= arg min
P

Lf

2
∥∥∥P −Z(t)

∥∥∥2

F
+ β ∥P ∥1

(3.23)

onde Z(t) = P (t) − ∇f
(
P (t)

)
/Lf . Então, a Eq. (3.23) pode ser resolvida pela

seguinte regra de atualização:

P t+1 = Sβ/Lf

[
Z(t)

]
(3.24)

onde Sβ/Lf

[
Z(t)

]
é a função de limiar suave, definida para Z(t) = [zij ] e β/Lf como

segue:

(
Sβ/Lf

[
Z(t)

])
ij

=


zij − β/Lf , se zij > β/Lf

zij + β/Lf , se zij < −β/Lf

0, caso contrário.

(3.25)

Além disso, para obter a solução ótima da Eq. (3.17) de forma mais eficiente,
primeiro obtemos a solução considerando apenas o primeiro termo da Eq. (3.16) e
tomamos isso como o valor inicial (ou seja, o valor inicial de P ) para as iterações
subsequentes no processo de aprendizado para resolver a Eq. (3.17). O processo
ocorre da seguinte forma.

A derivada em relação a P é dada por

∇f(P ) = GGT P −GY T + αP R. (3.26)

A partir de ∇f(P ) = 0, podemos derivar a seguinte aproximação:

P = 2
(
GGT

)−1
GY T . (3.27)

Portanto, definimos o valor inicial de P como

P 0 = 2
(
GGT + γI

)−1
GY T , (3.28)
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onde γ é um hiperparâmetro de regularização, conforme definido para evitar
problemas numéricos associados à inversão de matrizes próximas da singularidade.
Assim, a introdução de γI contribui para a estabilidade da solução, adicionando um
termo diagonal que melhora as propriedades de condicionamento da matriz.
Para melhorar a velocidade de convergência do ML-TSKC-FS, redefinimos o ponto
fixo P (t) na Eq. (3.23) em cada iteração, atualizando-o para

P (t) = P t + (bt−1 − 1)
bt

(P t − P t−1) , (3.29)

onde a sequência (bt) satisfaz b2
t+1−bt+1 ≤ b2

t , e P t é o resultado da t-ésima iteração.

Figura 3.8: Ilustração da trajetória de P durante a Minimização

A Figura 3.8 ilustra o processo de ajuste dos parâmetros P durante o processo de
minimização. Cada ponto no gráfico representa os valores de P após cada iteração,
mostrando como os parâmetros convergem para o ponto de mínimo da função de
custo.

Transformação da saída de valores reais a valores de rótulo

Após o término do processo de treinamento, foram obtidos os melhores parâmetros
de aprendizagem, representados por P ∗. A partir desses parâmetros, a predição dos
valores do modelo ML-TSKC-FS é realizada conforme a expressão:

y = P ∗T g(x),

onde o vetor de saída y contém os valores reais previstos. No entanto, para
realizar a classificação, é necessário converter esses valores reais em rótulos binários.
Para isso, aplicamos a função limiar φ(·), que transforma o vetor de predição contí-
nuo em um vetor de rótulos binários y′ = (y′

1, y′
2, . . . , y′

L)T, conforme definido pela
seguinte função:
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y′
l = φτ

(
y′

l

)
=

1, se y′
l > τ,

0, caso contrário,
(1 ≤ l ≤ L),

(3.30)

onde τ representa o limiar ajustável que define o ponto de corte para a classifi-
cação. Neste trabalho, o valor de τ foi fixado em 0,5, com base em um processo de
validação cruzada para garantir a melhor performance.

3.2.3 Conclusão do capítulo

Neste capítulo, foi explicado o modelo de Sistema Fuzzy Multi-Rótulo Takagi-
Sugeno-Kang Choquet (ML-TSKC-FS), destacando como ele funciona e quais são
suas principais partes. Esse modelo foi escolhido porque ajuda a capturar as intera-
ções entre diferentes características, o que é muito importante em problemas onde
há várias classes (ou rótulos) ao mesmo tempo, e esses rótulos podem ter alguma
relação entre si.

Primeiro, foi discutida a estrutura do modelo ML-TSKC-FS, enfatizando sua ca-
pacidade de lidar com dados que têm alguma incerteza ou falta de precisão. Depois,
exploramos o processo de aprendizagem do modelo e como ele ajusta seus parâme-
tros. Finalmente, foi feita a escolha da função limiar, que foi definido para ajudar
o modelo a transformar os valores contínuos da saída em 0 ou 1, para representar a
presença ou ausência de um rótulo.

Os exemplos e explicações dadas ao longo do capítulo mostram que o modelo ML-
TSKC-FS é promissor para problemas de classificação multi-rótulo, especialmente
onde é preciso lidar com relações complexas entre as variáveis. Assim, o conteúdo
deste capítulo forneceu uma base teórica importante para entender o modelo. No
próximo capítulo vamos explorar como o modelo (ML-TSKC-FS) se comporta em
testes práticos e comparações com outros métodos.





Capítulo 4

METODOLOGIA
EXPERIMENTAL

Neste capítulo, será detalhada a metodologia experimental utilizada para avaliar o
desempenho do modelo ML-TSKC-FS em cenários de classificação multi-rótulo. O
objetivo é mostrar, de forma clara, os passos que seguimos para configurar e testar o
modelo, assim como as métricas que usamos para medir a performance do modelo.

Primeiro, apresentamos as bases para a análise experimental, explicando as téc-
nicas e ferramentas que usamos, além das principais características dos conjuntos de
dados. Em seguida, descrevemos como organizamos os experimentos, incluindo os
parâmetros ajustados e o uso de validação cruzada para garantir que as conclusões
fossem o mais precisas e confiáveis possível.

Um ponto importante deste capítulo é a comparação entre o modelo ML-TSKC-
FS e sua versão anterior, o ML-TSK FS. Usamos diferentes tipos de medidas fuzzy
para entender melhor o impacto da integração das medidas fuzzy com a integral de
Choquet e ver se essa nova abordagem realmente melhora o desempenho.

Além disso, comparamos o desempenho do ML-TSKC-FS com outros métodos
conhecidos da literatura. Essa comparação é essencial para ver como o nosso modelo
se posiciona em relação aos modelos que já existem, o que nos ajuda a entender tanto
suas vantagens quanto suas limitações.

Dessa forma, este capítulo não apenas descreve os procedimentos seguidos, mas
também justifica as escolhas feitas e destaca a importância dos resultados obtidos,
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mostrando como o ML-TSKC-FS pode contribuir para melhorar as técnicas de clas-
sificação multi-rótulo.

4.1 FERRAMENTAS DE ANÁLISE EXPERIMENTAL

Nesta seção, serão apresentados os principais elementos utilizados para avaliar o
desempenho do modelo, justificando sua importância para a análise experimental.
Conjuntos de dados, métricas, testes estatísticos e validação cruzada desempenham
papéis essenciais ao garantir que o classificador seja robusto, preciso e confiável.
Cada um desses elementos contribui para uma avaliação rigorosa, assegurando que
o modelo generalize bem para novos dados.

4.1.1 Descrição dos Conjuntos de Dados Utilizados

Os experimentos foram feitos com dados de diferentes áreas, como som, texto, ima-
gem e genética/biologia, obtidos do repositório MULAN1.

A escolha dos conjuntos de dados buscou representar vários desafios que o mo-
delo ML-TSKC FS pode encontrar em diferentes situações. A variedade de áreas
ajuda a avaliar como o modelo lida com tipos variados de dados. Por exemplo, os
dados de áudio, como o Birds, apresentam desafios por causa de ruídos e mudan-
ças nas características do som, enquanto os dados de imagem, como o Corel5k, têm
uma sobreposição de rótulos e muita informação visual. Já os dados de genética,
como o Yeast, trazem relações complexas entre rótulos que são essenciais para uma
classificação precisa. Essa diversidade permite uma análise completa da capacidade
do modelo. A seguir, são apresentados os conjuntos de dados usados no trabalho,
separados por categoria.

• Som

– Cal500 [Turnbull et al. 2008]: Esse conjunto traz informações sobre mú-
sicas, com 174 rótulos e 68 atributos. Aqui, o desafio é que o número
de rótulos é muito maior que o de atributos, o que torna a tarefa de
classificação mais complicada.

– Birds [Briggs, Huang et al. 2013]: Usado para prever espécies de aves a
partir de gravações de áudio. Nesse caso, várias espécies podem ser de-
tectadas em uma mesma gravação, e o modelo precisa lidar com possíveis
ruídos e confusões no som.

– Emotions [Tsoumakas, Katakis e Vlahavas 2008]: Classifica músicas de
acordo com as emoções que elas transmitem. Esse conjunto tem 72 atri-
butos e 6 categorias emocionais, o que testa a capacidade do modelo de
entender nuances de sentimento nas músicas.

1https://mulan.sourceforge.net/datasets-mlc.html

https://mulan.sourceforge.net/datasets-mlc.html
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Os conjuntos de dados de Cal500, Birds e Emotions são úteis para entender
como o modelo lida com dados de áudio, que podem ter ruídos e sobreposições
de sinais. Esses testes ajudam a avaliar a eficiência do modelo em capturar
detalhes sonoros.

• Texto

– Bibtex [Katakis, Tsoumakas e Vlahavas 2008]: Dados usados para re-
comendar etiquetas em entradas bibliográficas, com 1836 atributos e 159
rótulos. O desafio aqui é a quantidade de atributos, típica em dados de
linguagem.

– Rcv1s1 e Rcv1s2 [Lewis et al. 2004]: Conjuntos de dados com 6000
artigos sobre diferentes assuntos. Esses dados são úteis para ver como
o modelo lida com textos complexos e múltiplas classificações ao mesmo
tempo.

Nos conjuntos de dados de Bibtex, Rcv1s1 e Rcv1s2, o modelo precisa lidar
com uma grande quantidade de atributos e rótulos, o que é comum em tarefas
de processamento de textos.

• Imagem

– Corel16k1 [Nando 2003] e Mirflickr: Dados de classificação de imagens
com muitos atributos, que exigem que o modelo interprete detalhes visuais
complexos.

– Image [Zhang e Zhou 2007]: Conjunto com 2000 imagens transformadas
em vetores de 294 dimensões. As imagens foram convertidas para um
espaço de cores específico, o que pode adicionar variações nos dados.

– Flags [Gonçalves et al. 2013]: Dados sobre bandeiras, com 194 instâncias
e 19 características, como cores e símbolos. Esse conjunto exige que o
modelo relacione aspectos visuais com símbolos específicos.

– Scene [Boutell et al. 2004]: Conjunto de imagens de cenas, com 2407
imagens e 6 classes. Aqui, o desafio é identificar corretamente várias
categorias em uma única imagem.

Os conjuntos de dados de Corel16k1, Mirflickr, Image, Flags e Scene são
usados para classificação de imagens e apresentam o desafio de lidar com gran-
des quantidades de detalhes visuais e categorias múltiplas ao mesmo tempo.

• Genética/Biologia
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– Yeast [Elisseeff e Weston 2001]: Conjunto de dados biológicos sobre genes
de levedura, com até 14 categorias funcionais. Esse é um dos mais de-
safiadores, pois erros podem afetar diretamente a interpretação de dados
biológicos.

A variedade dos conjuntos de dados permite uma avaliação completa do modelo
ML-TSKC FS. Cada domínio tem desafios específicos, desde alta quantidade de
atributos até ruídos nos dados. Isso ajuda a ver se o modelo consegue generalizar
bem em situações diferentes e lidar com vários tipos de rótulos ao mesmo tempo.

A Tabela 4.1 apresenta um resumo das principais características dos conjuntos
de dados utilizados no estudo, incluindo o número de instâncias, atributos e rótulos,
além do domínio. No Apêndice B, você pode encontrar algumas das bases de dados
da Tabela 4.1 apresentadas com mais detalhes.

Conjuntos de Dados Instâncias Atributos Rótulos Domínio
Bibtex 7395 1836 159 Texto
Birds 645 260 19 Áudio
Cal500 502 68 174 Áudio
Corel16k1 13766 500 153 Imagem
Emotions 593 72 6 Áudio
Flags 194 19 7 Imagem
Image 600 294 5 Imagem
Mirflickr 25000 1000 38 Imagem
Rcv1s1 6000 944 101 Texto
Rcv1s2 6000 944 101 Texto
Scene 2407 294 6 Imagem
Yeast 2417 103 14 Gen/Bio

Tabela 4.1: Resumo dos conjuntos de dados utilizados no estudo.

4.1.2 Métricas de Avaliação

Para avaliar o desempenho do modelo ML-TSKC FS, foram escolhidas métricas que
medem diferentes aspectos importantes da classificação multi-rótulo. Essas métricas
são reconhecidas na literatura como úteis para entender o comportamento do modelo
em tarefas com múltiplos rótulos [Schapire e Singer 2000].

• Average Precision (AP): Mede se o modelo acerta a ordem dos rótulos
mais importantes nas primeiras posições. Em outras palavras, ela verifica se o
modelo está dando prioridade aos rótulos corretos para cada instância. A AP
é definida como:
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AP = 1
N

N∑
i=1

1
|Li|

|Li|∑
k=1

|{f(xi, r) ∈ Li : rank(f(xi, r)) ≤ rank(f(xi, k))}|
rank(f(xi, k)) (4.1)

Aqui, Li é o conjunto de rótulos corretos para a instância i, e rank(f(xi, k))
representa a posição (ou “ranking”) do rótulo k na lista do modelo. Quanto
maior o valor de AP, melhor o modelo está acertando a ordem dos rótulos,
mostrando que ele está priorizando corretamente os mais importantes.

• Hamming Loss (HL): Mede a proporção de rótulos que o modelo previu
errado, ou seja, quantos rótulos ele classificou incorretamente. Ele calcula a
taxa de erro em todas as instâncias e é definido como:

HL = 1
N

N∑
i=1

|yi ⊕ ŷi|
|L|

(4.2)

Aqui, yi é o conjunto de rótulos corretos para a instância i, ŷi é o conjunto de
rótulos previstos pelo modelo, e L é o número total de rótulos. Um valor de
HL mais baixo indica que o modelo está errando menos rótulos e, portanto, é
mais preciso.

• Ranking Loss (RL): Mede se o modelo coloca rótulos irrelevantes acima
dos rótulos corretos na lista de previsão. Em outras palavras, verifica se a
ordenação dos rótulos pelo modelo está invertida. É definida como:

RL = 1
N

N∑
i=1

|{(rj , rk) ∈ Li × Li : rank(f(xi, rj)) > rank(f(xi, rk))}|
|Li| × |Li|

(4.3)

Nesta fórmula, Li são os rótulos corretos e Li são os rótulos incorretos. Um RL
baixo significa que o modelo está colocando corretamente os rótulos relevantes
nas primeiras posições, o que é ideal para uma boa classificação.

• Coverage (CV): Mede o quanto o modelo precisa percorrer a lista para en-
contrar todos os rótulos corretos. Em outras palavras, ela mede a profundidade
da lista onde está o último rótulo correto. A CV é calculada como:

CV = 1
N

N∑
i=1

(
max
r∈Li

rank(f(xi, r))− 1
)

(4.4)

Um valor de CV mais baixo indica que o modelo acerta os rótulos corretos mais
cedo na lista, o que é desejável. Isso mostra que o modelo está priorizando
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os rótulos importantes logo no início, ao invés de colocá-los em posições mais
baixas.

4.1.3 Testes de Significância Estatística

Para garantir que as diferenças nos resultados obtidos nos experimentos são confiá-
veis, foram aplicados testes estatísticos de significância. Esses testes nos ajudam a
verificar se os modelos realmente têm desempenhos diferentes ou se as variações nos
resultados podem ter ocorrido por acaso.

Teste de Friedman: É utilizado para analisar as diferenças de desempenho
entre múltiplos algoritmos em diferentes conjuntos de dados. Esse teste é útil para
situações em que queremos comparar mais de dois modelos ao mesmo tempo, veri-
ficando se há alguma diferença significativa entre eles.

As hipóteses do teste de Friedman são:

• H0: Não há diferença significativa de desempenho entre os algoritmos.

• H1: Existe uma diferença significativa de desempenho entre os algoritmos.

A estatística de Friedman é calculada como:

FF = (N − 1)χ2
F

N(k − 1)− χ2
F

(4.5)

e

χ2
F = 12N

K(K + 1)

[∑
k

Rank2
k −

K(K + 1)2

4

]
(4.6)

onde N é o número de conjuntos de dados, K é o número de algoritmos, e Rankk

representa a média das posições de cada algoritmo. Se o valor de χ2 for maior que
o valor crítico, rejeitamos H0, indicando que há uma diferença significativa entre os
algoritmos.

Teste Post-Hoc Bonferroni-Dunn: Caso o teste de Friedman indique uma
diferença significativa, o teste de Bonferroni-Dunn é usado para identificar quais
pares de algoritmos apresentam essa diferença. Esse teste é útil para comparações
específicas entre pares de algoritmos, ajudando a identificar qual modelo se destaca.

A diferença crítica para o teste de Bonferroni-Dunn é calculada como:

CD = qα

√
K(K + 1)

6N
(4.7)

onde qα é o valor crítico para o nível de significância escolhido (por exemplo,
α = 0,05). Se a diferença entre as médias de dois algoritmos for maior que o valor
de CD, podemos concluir que essa diferença é significativa.
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Comparação entre Dois Algoritmos usando o Teste de Wilcoxon
Para comparar o desempenho de apenas dois algoritmos, utilizamos o teste de Wil-
coxon, um teste não paramétrico que verifica se há diferença significativa entre os
dois modelos.

As hipóteses do teste de Wilcoxon são:

• H0: Não há diferença significativa entre os desempenhos dos dois algoritmos.

• H1: Há uma diferença significativa entre os desempenhos dos dois algoritmos.

Para aplicar o teste, calculamos a diferença de desempenho entre os dois algorit-
mos em cada conjunto de dados, atribuindo rangos às diferenças. A estatística do
teste de Wilcoxon é baseada nos rangos positivos e negativos e é dada por:

W = min(W +, W −) (4.8)

onde W + e W − são as somas dos rangos positivos e negativos, respectivamente.
Se o valor de W for menor que o valor crítico, rejeitamos H0, indicando que há uma
diferença significativa entre os dois algoritmos.

Esses testes nos ajudam a avaliar se as diferenças observadas entre os modelos são
estatisticamente confiáveis, dando mais segurança ao escolher o modelo que melhor
se adapta ao problema.

4.1.4 Procedimentos de Avaliação

Para obter uma estimativa confiável do desempenho do modelo ML-TSKC FS, foi
adotado o método de validação cruzada em cinco partes (5-fold). Esse método
permite testar o modelo em várias divisões do conjunto de dados, ajudando a reduzir
o viés que poderia ocorrer se apenas uma divisão fosse usada. A validação cruzada
com cinco ou dez partes é amplamente recomendada, pois oferece um equilíbrio entre
viés e variabilidade nos resultados, sendo muito utilizada para avaliar a precisão de
modelos de aprendizado de máquina [Hastie, Tibshirani e Friedman 2009; Gareth
et al. 2013].
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Figura 4.1: Ilustração da validação cruzada de cinco partes (5-fold).

A Figura 4.1 mostra como funciona o processo de validação cruzada. Em cada
uma das cinco etapas, uma parte do conjunto de dados é usada como teste, enquanto
as outras partes são usadas para treinar o modelo. Esse processo é repetido cinco
vezes, de forma que cada parte seja usada uma vez como teste. Esse método ajuda
a avaliar o desempenho de forma mais precisa e confiável, diminuindo o efeito de
possíveis variações nos dados [Hastie, Tibshirani e Friedman 2009].

Além disso, o modelo ML-TSKC FS foi comparado com outros algoritmos conhe-
cidos para classificação multi-rótulo. Essa comparação é importante para entender
as vantagens do modelo proposto e ver se ele realmente traz melhorias em termos
de precisão, capacidade de generalização e robustez.

No Apêndice A, encontra-se a parte do código onde a Integral de Cho-
quet é implementada no modelo ML-TSK FS, permitindo a obtenção dos
resultados apresentados na próxima seção.

4.2 RESULTADOS E DISCUSSÕES

Nesta seção, são apresentados os parâmetros utilizados para obter os resultados
do modelo ML-TSKC-FS em diferentes conjuntos de dados. Primeiramente, explo-
ramos os efeitos das diferentes medidas fuzzy na Integral de Choquet, realizando
um estudo comparativo entre o modelo proposto, ML-TSKC-FS, e o modelo origi-
nal, ML-TSK FS. Essa análise tem como objetivo avaliar o impacto da integração
da Integral de Choquet no desempenho do modelo. Em seguida, conduzimos uma
comparação entre o modelo ML-TSKC-FS e os modelos tradicionais da literatura,
destacando as principais vantagens e limitações de cada abordagem. Em ambas as
etapas, os resultados obtidos foram submetidos a testes estatísticos, com o intuito
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de proporcionar uma compreensão mais aprofundada e rigorosa das diferenças de
desempenho observadas.

4.2.1 Configuração do Experimento

Para garantir uma avaliação completa e confiável do desempenho do ML-TSKC FS
em tarefas de classificação multi-rótulo, adotamos protocolos de teste detalhados.
Esses protocolos foram projetados para testar o modelo em diferentes condições,
permitindo comparações com modelos de referência.

Parâmetros do Modelo:
Os parâmetros ajustáveis do ML-TSKC FS, como α, β, γ, o número de regras

k, e o parâmetro fuzzy h, foram otimizados por meio de uma busca em grade, como
mostrado na Tabela 4.2. Cada um desses parâmetros tem um papel importante:

• Os parâmetros α e β são usados, respectivamente, para ajustar o peso do
aprendizado de correlação e a complexidade do modelo.

• γ: Define a estabilidade do modelo, garantindo que ele não oscile muito entre
diferentes execuções.

• h: Ajusta a sensibilidade das funções fuzzy, permitindo que o modelo se adapte
melhor às variações dos dados.

• k: Determina o número de regras fuzzy. Valores mais altos de k permitem
capturar mais detalhes nos dados, mas aumentam a complexidade do modelo.

Esses parâmetros foram ajustados por meio de uma busca em grade, um processo
que explora diferentes combinações de valores para identificar a configuração ideal.
Esse processo é essencial para garantir que o modelo seja otimizado e tenha um
desempenho consistente em cada conjunto de dados.

A Tabela 4.2 mostra os valores testados para cada parâmetro durante a busca
em grade. Esses valores foram selecionados com base em literatura e testes iniciais,
cobrindo uma gama ampla para encontrar a melhor configuração para o modelo
ML-TSKC FS em cada conjunto de dados.

Parâmetro Valores Testados
α {0.01, 0.1, 1, 10, 100}
β {0.01, 0.1, 1, 10, 100}
γ {0.01, 0.1, 1, 10, 100}
K {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
h {0.01, 0.1, 1, 10, 100}

Tabela 4.2: Configuração dos parâmetros.
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Apresentação dos Resultados

Os resultados são apresentados em duas partes: primeiro, analisamos como as dife-
rentes medidas fuzzy afetam o desempenho do modelo, buscando identificar aquelas
que proporcionam melhores resultados. Em seguida, comparamos o desempenho
do nosso melhor modelo com nove outros classificadores multi-rótulo que utilizam
abordagens diferentes. Essa comparação é essencial para avaliar se nosso modelo
realmente traz melhorias em relação a métodos já existentes para classificação multi-
rótulo.

4.2.2 Estudo Comparativo entre o ML-TSKC FS (com diferentes
medidas fuzzy) e o ML-TSK FS

Nesta seção, apresentamos um estudo comparativo entre o modelo original ML-
TSK FS proposto por Lou [Lou et al. 2021], e o modelo ML-TSKC FS com
diferentes medidas fuzzy. Essas variações incluem as configurações Choq Uni,
Choq Rel, Choq Pro, Choq Pot e Choq Pon, onde cada uma representa um tipo
específico de medida fuzzy aplicada: Uni (Uniforme), Rel (Relativa), Pro (Produto),
Pot (Potência) e Pon (Ponderada).

Para avaliar o desempenho de cada modelo, foram utilizadas métricas específi-
cas: AP, HL, RL e CV. Como explicado na Seção 4.1.2, essas métricas permitem
mensurar a precisão do modelo, o erro de classificação, bem como a profundidade
necessária para que todos os rótulos verdadeiros sejam corretamente cobertos. Esse
estudo comparativo visa identificar a eficácia de cada variação do modelo ML-TSKC
FS em relação ao ML-TSK FS original, proporcionando uma visão mais aprofundada
sobre o impacto das diferentes medidas fuzzy no desempenho de classificação.

Nas tabelas, os valores destacados em (azul) indicam o melhor desempenho entre
os modelos para cada métrica e conjunto de dados. Para facilitar a interpretação:

• A seta ↓ indica que, para essa métrica, valores menores representam melhor
desempenho.

• A seta ↑ indica que, para essa métrica, valores maiores indicam melhor desem-
penho.



4.2. RESULTADOS E DISCUSSÕES 89

Dataset ML-TSK FS Choq Uni Choq Rel Choq Pro Choq Pot Choq Pon
Bibtex 0.61(0.00) 0.61(0.01) 0.61(0.01) 0.62(0.01) 0.61(0.02) 0.62(0.01)
Birds 0.34(0.03) 0.37(0.05) 0.37(0.03) 0.37(0.01) 0.37(0.04) 0.37(0.06)
Cal500 0.52(0.01) 0.52(0.01) 0.52(0.01) 0.52(0.01) 0.52(0.01) 0.52(0.02)
Corel16k1 0.35(0.01) 0.36(0.00) 0.36(0.01) 0.36(0.00) 0.36(0.00) 0.36(0.00)
Emotions 0.82(0.01) 0.82(0.03) 0.82(0.01) 0.82(0.01) 0.82(0.02) 0.82(0.03)
Flags 0.82(0.01) 0.84(0.02) 0.84(0.03) 0.83(0.02) 0.83(0.04) 0.83(0.03)
Image 0.79(0.03) 0.79(0.04) 0.79(0.02) 0.79(0.04) 0.79(0.04) 0.80(0.03)
Mirflickr 0.53(0.00) 0.53(0.00) 0.53(0.00) 0.53(0.00) 0.53(0.00) 0.53(0.00)
Rev1s1 0.61(0.00) 0.62(0.00) 0.62(0.01) 0.62(0.01) 0.62(0.01) 0.62(0.01)
Rev1s2 0.64(0.01) 0.64(0.01) 0.64(0.01) 0.64(0.01) 0.64(0.01) 0.64(0.01)
Scene 0.86(0.01) 0.86(0.01) 0.86(0.01) 0.86(0.01) 0.86(0.01) 0.86(0.00)
Yeast 0.76(0.01) 0.77(0.01) 0.77(0.00) 0.77(0.01) 0.77(0.01) 0.77(0.01)

Tabela 4.3: Resultados de (AP) ↑: ML TKS-FS vs Choquet

Figura 4.2: Diagrama de barras (AP) ↑ : Choquet vs ML TKS-FS

Average Precision (AP): A Tabela 4.3 e a Figura 4.2 mostram os resultados
de AP, comparando o ML-TSKC FS com o modelo original ML-TSK FS. Notamos
que o ML-TSKC FS tem melhor desempenho em vários conjuntos de dados. Esse
ganho de precisão ocorre porque a Integral de Choquet consegue capturar interações
complexas entre rótulos, especialmente quando eles são interdependentes.

Além disso, podemos observar que na maioria de conjuntos de dados a configu-
ração Choq Pon apresentam um desempenho superior. Esses resultados sugerem
que essas variante consegue lidar melhor com a interação entre rótulos.
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Dataset ML-TSK FS Choq Uni Choq Rel Choq Pro Choq Pot Choq Pon
Bibtex 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00)
Birds 0.05(0.01) 0.04(0.00) 0.04(0.00) 0.04(0.00) 0.04(0.00) 0.04(0.01)
Cal500 0.14(0.00) 0.13(0.00) 0.13(0.00) 0.13(0.00) 0.13(0.00) 0.13(0.00)
Corel16k1 0.02(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00)
Emotions 0.19(0.01) 0.19(0.01) 0.19(0.01) 0.19(0.01) 0.19(0.01) 0.19(0.01)
Flags 0.26(0.03) 0.24(0.03) 0.25(0.03) 0.25(0.03) 0.24(0.01) 0.25(0.01)
Image 0.18(0.01) 0.18(0.01) 0.17(0.01) 0.18(0.01) 0.18(0.01) 0.18(0.00)
Mirflickr 0.15(0.00) 0.15(0.00) 0.15(0.00) 0.15(0.00) 0.15(0.00) 0.15(0.00)
Rev1s1 0.03(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00)
Rev1s2 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00)
Scene 0.11(0.01) 0.10(0.01) 0.10(0.00) 0.10(0.01) 0.10(0.01) 0.10(0.01)
Yeast 0.20(0.01) 0.19(0.00) 0.19(0.01) 0.19(0.00) 0.19(0.01) 0.19(0.01)

Tabela 4.4: Resultados de (HL) ↓: ML TKS-FS vs Choquet

Figura 4.3: Diagrama de barras (HL) ↓ : Choquet vs ML TKS-FS

Hamming Loss (HL): Os resultados na Tabela 4.4 e a Figura 4.3 indicam
uma redução no erro de classificação para o modelo ML-TSKC FS em comparação
com o ML-TSK FS. A redução no HL significa que o ML-TSKC FS é mais preciso
na classificação, minimizando os erros. As variantes Choq Rel e Choq Pon se
destacam, sugerindo que essas variantes são especialmente úteis para minimizar o
erro.
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Dataset ML-TSK FS Choq Uni Choq Rel Choq Pro Choq Pot Choq Pon
Bibtex 0.07(0.00) 0.06(0.00) 0.06(0.00) 0.06(0.00) 0.06(0.00) 0.06(0.00)
Birds 0.09(0.02) 0.07(0.01) 0.07(0.01) 0.07(0.02) 0.07(0.01) 0.07(0.02)
Cal500 0.18(0.00) 0.17(0.01) 0.17(0.00) 0.17(0.00) 0.17(0.00) 0.17(0.00)
Corel16k1 0.14(0.00) 0.13(0.00) 0.13(0.00) 0.13(0.00) 0.13(0.00) 0.14(0.00)
Emotions 0.15(0.02) 0.15(0.03) 0.15(0.02) 0.14(0.01) 0.14(0.02) 0.14(0.01)
Flags 0.21(0.02) 0.19(0.03) 0.19(0.05) 0.20(0.03) 0.19(0.04) 0.20(0.03)
Image 0.17(0.03) 0.17(0.03) 0.17(0.01) 0.17(0.02) 0.17(0.03) 0.18(0.02)
Mirflickr 0.20(0.00) 0.19(0.00) 0.19(0.00) 0.19(0.00) 0.19(0.00) 0.19(0.00)
Rev1s1 0.05(0.00) 0.04(0.00) 0.04(0.00) 0.04(0.00) 0.04(0.00) 0.04(0.00)
Rev1s2 0.05(0.00) 0.04(0.00) 0.04(0.00) 0.04(0.00) 0.04(0.00) 0.04(0.00)
Scene 0.08(0.01) 0.08(0.01) 0.08(0.00) 0.08(0.00) 0.08(0.00) 0.08(0.01)
Yeast 0.17(0.01) 0.16(0.01) 0.16(0.01) 0.16(0.01) 0.16(0.01) 0.16(0.01)

Tabela 4.5: Resultados de (RL) ↓: ML TKS-FS vs Choquet

Figura 4.4: Diagrama de barras (RL) ↓ : Choquet vs ML TKS-FS

Ranking Loss (RL): A Tabela 4.5 e a Figura 4.4 mostram que as variantes
Choq Pro, Choq Pot e Choq Pon frequentemente apresentam valores mais bai-
xos de RL, indicando uma melhor ordenação dos rótulos relevantes em comparação
com o modelo ML-TSK FS. Isso sugere que essas variantes ajudam a organizar cor-
retamente a relevância dos rótulos, o que é essencial em cenários onde a hierarquia
dos rótulos importa.
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Dataset ML-TSK FS Choq Uni Choq Rel Choq Pro Choq Pot Choq Pon
Bibtex 0.12(0.01) 0.12(0.00) 0.12(0.00) 0.12(0.01) 0.12(0.01) 0.12(0.00)
Birds 0.11(0.03) 0.10(0.01) 0.09(0.02) 0.09(0.02) 0.09(0.01) 0.09(0.03)
Cal500 0.73(0.01) 0.71(0.01) 0.72(0.02) 0.72(0.02) 0.72(0.02) 0.72(0.02)
Corel16k1 0.29(0.00) 0.25(0.00) 0.25(0.00) 0.26(0.01) 0.26(0.00) 0.27(0.01)
Emotions 0.28(0.03) 0.28(0.02) 0.28(0.02) 0.28(0.02) 0.28(0.02) 0.28(0.01)
Flags 0.52(0.01) 0.51(0.02) 0.51(0.03) 0.53(0.03) 0.52(0.02) 0.53(0.03)
Image 0.18(0.02) 0.19(0.02) 0.18(0.01) 0.18(0.02) 0.18(0.02) 0.19(0.02)
Mirflickr 0.42(0.00) 0.42(0.00) 0.42(0.00) 0.42(0.00) 0.42(0.00) 0.42(0.01)
Rev1s1 0.11(0.00) 0.11(0.01) 0.11(0.01) 0.11(0.01) 0.11(0.00) 0.11(0.01)
Rev1s2 0.12(0.01) 0.11(0.01) 0.11(0.01) 0.11(0.00) 0.11(0.00) 0.10(0.01)
Scene 0.08(0.01) 0.08(0.01) 0.08(0.00) 0.08(0.00) 0.08(0.00) 0.08(0.01)
Yeast 0.46(0.01) 0.45(0.01) 0.45(0.01) 0.45(0.01) 0.45(0.01) 0.45(0.01)

Tabela 4.6: Resultados de (CV) ↓: ML TKS-FS vs Choquet

Figura 4.5: Diagrama de barras (CV) ↓ : Choquet vs ML TKS-FS

Coverage (CV): Apresentada na Tabela 4.6 e Figura 4.5, indica a profundidade
necessária para cobrir todos os rótulos verdadeiros. O modelo ML-TSKC FS com as
variantes Choq Uni e Choq Rel apresentou valores de CV mais baixos, sugerindo
que essas configurações são eficazes na hierarquia de rótulos, o que reduz o número
de rótulos a serem verificados.

Em resumo, os resultados indicam que o modelo ML-TSKC FS, com a inclusão
da Integral de Choquet, apresenta desempenho superior em relação ao ML-TSK
FS em quase todas as métricas e conjuntos de dados analisados. Essa melhoria
é especialmente relevante, pois demonstra a eficácia da Integral de Choquet em
capturar de forma mais precisa as interações entre os atributos, proporcionando
classificações mais robustas em cenários complexos.

No entanto, ao comparar os resultados obtidos com diferentes medidas fuzzy
dentro do modelo baseado em Choquet, observou-se uma semelhança nos desempe-
nhos. Isso pode ser explicado pela natureza das funções de agregação, que tendem
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a capturar relações similares entre os dados, independentemente da medida fuzzy
selecionada. Além disso, é possível que os dados testados não apresentem variabili-
dade suficiente ou características suficientemente distintas para evidenciar diferenças
significativas entre as medidas, resultando em desempenhos próximos.

A seguir, faremos um estudo estatístico para verificar se as melhorias obtidas
nesta seção são estatisticamente significativas.

Estudo Comparativo Estatístico entre o ML-TSKC FS (com diferentes
medidas fuzzy) e o ML-TSK FS

Para verificar se as diferenças de desempenho entre o modelo ML-TSKC FS (com
medidas fuzzy baseadas na Integral de Choquet) e o modelo ML-TSK FS são es-
tatisticamente significativas, realizamos um estudo utilizando o teste de Wilcoxon.
Essa análise confirma a relevância das melhorias observadas.

Teste de Wilcoxon: Esse teste não paramétrico foi aplicado para comparações
emparelhadas entre o modelo ML-TSK FS e as versões do ML-TSKC FS com dife-
rentes medidas fuzzy (Choq Uni, Choq Rel, Choq Pro, Choq Pot e Choq Pon). As
avaliações foram realizadas para as métricas AP (Average Precision), HL (Hamming
Loss), RL (Ranking Loss) e CV (Cobertura).

Os resultados identificaram as configurações que apresentam ganhos significati-
vos, destacando as medidas fuzzy mais adequadas para diferentes cenários.

• Resultados do Teste de Wilcoxon para AP: Na Tabela 4.7, vemos os
resultados do teste de Wilcoxon para a métrica de AP. Os valores de p para
todas as comparações são menores que 0,05, indicando que as versões do mo-
delo ML-TSKC FS com medidas fuzzy superam o modelo ML-TSK FS em
termos de AP . Isso significa que essas variações com Choquet são mais efica-
zes em identificar rótulos corretamente.

Comparação de Modelos Valor p
ML-TSK FS vs Choq Uni 0,04
ML-TSK FS vs Choq Rel 0,04
ML-TSK FS vs Choq Pro 0,02
ML-TSK FS vs Choq Pot 0,03
ML-TSK FS vs Choq Pon 0,01

Tabela 4.7: Resultados do Teste de Wilcoxon para AP

• Resultados do Teste de Wilcoxon para HL: A Tabela 4.8 mostra os resul-
tados para a HL. Aqui, o teste indica que todas as variantes de Choquet têm
um desempenho significativamente melhor, reduzindo o erro de classificação
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em comparação com o modelo ML-TSK FS. Isso significa que essas versões
são mais precisas ao evitar classificações incorretas.

Comparação de Modelos Valor p
ML-TSK FS vs Choq Uni 0,02
ML-TSK FS vs Choq Rel 0,01
ML-TSK FS vs Choq Pro 0,02
ML-TSK FS vs Choq Pot 0,02
ML-TSK FS vs Choq Pon 0,02

Tabela 4.8: Resultados do Teste de Wilcoxon para HL

• Resultados do Teste de Wilcoxon para RL: Na Tabela 4.9, vemos que
os valores de p são pequenos para as comparações com todas as variantes de
Choquet. Isso sugere que essas variantes ajudam o modelo a classificar melhor
os rótulos, ordenando corretamente os mais importantes.

Comparação de Modelos Valor p
ML-TSK FS vs Choq Uni 0,01
ML-TSK FS vs Choq Rel 0,01
ML-TSK FS vs Choq Pro 0,00
ML-TSK FS vs Choq Pot 0,00
ML-TSK FS vs Choq Pon 0,01

Tabela 4.9: Resultados do Teste de Wilcoxon para RL

• Resultados do Teste de Wilcoxon para CV: Por fim, a Tabela 4.10 apre-
senta os resultados para a métrica CV. Observa-se que as variantes Choq Rel
e Choq Pot foram mais eficazes em identificar os rótulos mais relevantes de
forma mais rápida, exigindo uma menor profundidade de busca. Isso indica
que essas variantes tornam o modelo mais eficiente, permitindo localizar os ró-
tulos corretos com maior agilidade. Para as demais variantes, onde p é maior
que 0,05, as diferenças de desempenho em relação ao modelo ML-TSK FS não
são estatisticamente significativas.

Comparação de Modelos Valor p
ML-TSK FS vs Choq Uni 0,09
ML-TSK FS vs Choq Rel 0,02
ML-TSK FS vs Choq Pro 0,11
ML-TSK FS vs Choq Pot 0,04
ML-TSK FS vs Choq Pon 0,12

Tabela 4.10: Resultados do Teste de Wilcoxon para CV
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Os resultados dos testes mostram que o modelo ML-TSKC FS, usando diferen-
tes variantes da Integral de Choquet, como Choq Rel, Choq Pro e Choq Pon,
supera o modelo tradicional ML-TSK FS em várias métricas. Esses valores
de p pequenos indicam que essas melhorias são estatisticamente significati-
vas. Assim, as medidas fuzzy adicionadas realmente aumentam a precisão e
eficiência do modelo em identificar rótulos relevantes.

Em resumo, os resultados dos testes de Wilcoxon indicam que o modelo ML-
TSKC FS, ao utilizar diferentes medidas fuzzy na Integral de Choquet, supera o
modelo ML-TSK FS em diversas métricas, confirmando que as melhorias observadas
são estatisticamente significativas.

Na próxima seção, analisaremos como o modelo ML-TSKC FS se compara a
outros métodos consolidados na literatura. Para essa análise, utilizaremos o mo-
delo com Integral de Choquet e Medida Fuzzy Ponderada (Choq Pon), pois
estudos prévios demonstraram que essa configuração do ML-TSKC FS alcança os
melhores resultados.

4.2.3 Estudo Comparativo entre o ML-TSKC FS e Modelos de Re-
ferência da Literatura

Para avaliar o desempenho do modelo ML-TSKC FS, realizamos uma análise com-
parativa com vários modelos amplamente utilizados na área de classificação multi-
rótulo. Esses modelos representam diferentes abordagens para resolver os desafios
dessa tarefa, como a interdependência entre rótulos e a complexidade dos dados. A
Figura 4.6 mostra uma linha do tempo com a evolução desses modelos, oferecendo
uma visão geral do desenvolvimento dessa área ao longo dos anos.

Os principais modelos de referência comparados estão descritos a seguir:

Figura 4.6: Evolução cronológica dos modelos de classificação multi-
rótulo.

• BP-MLL [Min-Ling e Zhi-Hua 2006]: Este método foi um dos primeiros a usar
redes neurais para capturar a correlação entre rótulos, buscando melhorar a
precisão ao prever rótulos relacionados juntos.

• ML-KNN [Zhang e Zhi-Hua 2007]: Usa os k vizinhos mais próximos para
prever rótulos, adaptando uma técnica clássica de aprendizado para o contexto
multi-rótulo.
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• CC [Read et al. 2011]: Converte a tarefa multi-rótulo em várias classificações
binárias, possibilitando ajuste de parâmetros para cada rótulo.

• BR [Łęski 2002]: Trata cada rótulo como um problema separado de classifica-
ção binária (Binary Relevance), uma abordagem que melhora a capacidade de
generalização da classificação fuzzy introduzindo o aprendizado ε-insensitive
learning.

• MLSF [Sun, Kudo e Kimura 2016]: Combina aprendizado de meta-rótulos
com seleção de características, levando em conta as correlações entre rótulos
para melhorar a precisão.

• C2AE [Yeh et al. 2017]: Utiliza autoencoders para aprender representações
eficazes dos rótulos, útil para problemas mais complexos.

• JBNN [He e Xia 2018]: Usa múltiplas funções de ativação para capturar
correlações entre rótulos em uma rede neural.

• HNOML [Zhang, Yu et al. 2019]: Foca em reduzir ruídos nos rótulos e ca-
racterísticas, melhorando o desempenho em dados com ruídos.

• ML-TSK FS [Lou et al. 2021]: Aplica regras fuzzy (Takagi-Sugeno-Kang)
para capturar relações entre características e rótulos, buscando previsões mais
precisas e consistentes.

As métricas usadas para avaliar os modelos são as mesmas descritas na Seção
4.1.2, com destaque em azul para os melhores resultados em cada conjunto de dados.
As Tabelas apresentam as médias dos resultados, obtidas a partir de validação cru-
zada em 5 partes, com desvios padrão para indicar a variação dos resultados para o
ML-TSKC FS e os demais resultados da tabela são obtidos de Lou [Lou et al. 2021]
.
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Dataset ML-kNN HNOML MLSF CC BR C2AE BP-MLL JBNN ML-TSK FS ML-TSKC FS

Bibtex 0.35(0.01) 0.58(0.01) 0.37(0.02) 0.58(0.01) 0.60(0.01) 0.09(0.03) 0.54(0.01) 0.02(0.00) 0.61(0.00) 0.62(0.01)

Birds 0.22(0.02) 0.34(0.03) 0.26(0.03) 0.34(0.01) 0.33(0.03) 0.30(0.04) 0.34(0.02) 0.29(0.06) 0.34(0.03) 0.37(0.06)

Cal500 0.50(0.01) 0.43(0.18) 0.49(0.01) 0.46(0.01) 0.50(0.01) 0.33(0.02) 0.46(0.02) 0.45(0.01) 0.52(0.01) 0.52(0.02)

Corel16k1 0.28(0.00) 0.34(0.01) 0.28(0.01) 0.30(0.00) 0.34(0.00) 0.21(0.02) 0.26(0.01) 0.08(0.00) 0.35(0.01) 0.36(0.00)

Emotions 0.71(0.02) 0.80(0.03) 0.76(0.02) 0.78(0.00) 0.80(0.01) 0.57(0.03) 0.80(0.01) 0.76(0.02) 0.82(0.01) 0.82(0.03)

Flags 0.80(0.04) 0.81(0.01) 0.82(0.03) 0.80(0.04) 0.81(0.04) 0.74(0.06) 0.82(0.02) 0.80(0.04) 0.82(0.01) 0.83(0.03)

Image 0.74(0.02) 0.78(0.02) 0.72(0.02) 0.78(0.03) 0.79(0.03) 0.47(0.02) 0.79(0.02) 0.63(0.04) 0.79(0.03) 0.80(0.03)

Mirflickr 0.51(0.00) 0.51(0.00) 0.27(0.00) 0.48(0.00) 0.44(0.04) 0.45(0.02) 0.47(0.02) 0.42(0.03) 0.53(0.00) 0.53(0.00)

Rev1s1 0.49(0.01) 0.61(0.01) 0.52(0.02) 0.57(0.01) 0.60(0.01) 0.21(0.02) 0.53(0.05) 0.05(0.01) 0.61(0.00) 0.62(0.01)

Rev1s2 0.50(0.01) 0.63(0.00) 0.52(0.02) 0.58(0.01) 0.61(0.01) 0.18(0.04) 0.58(0.01) 0.05(0.01) 0.64(0.01) 0.64(0.01)

Scene 0.87(0.01) 0.85(0.01) 0.86(0.02) 0.84(0.01) 0.86(0.01) 0.42(0.01) 0.87(0.01) 0.59(0.03) 0.86(0.01) 0.86(0.00)

Yeast 0.76(0.02) 0.61(0.00) 0.75(0.02) 0.72(0.01) 0.76(0.01) 0.57(0.02) 0.74(0.01) 0.71(0.03) 0.76(0.01) 0.77(0.01)

Tabela 4.11: Resultados de (AP) : Classificadores vs. ML TKSC-FS

Figura 4.7: Diagrama de barras de (AP): Classificadores vs. ML
TKSC-FS

Análise Comparativa de AP Com base na Tabela 4.11 e na Figura 4.7, que
mostram os resultados de AP) comparando o ML-TSKC FS com os modelos da
literatura, podemos chegar as seguintes conclusões:

• Desempenho Superior em Vários Conjuntos de Dados: O ML-TSKC
FS teve uma precisão média superior em muitos conjuntos, como Bibtex, Birds
e Flags. Isso indica que ele é eficiente para priorizar rótulos importantes.

• Competição com Modelos de Rede Neural Profunda: Apesar de mode-
los como o C2AE e o JBNN terem bom desempenho, o ML-TSKC FS consegue
uma precisão comparável ou melhor em vários casos, oferecendo uma alterna-
tiva mais simples e fácil de interpretar.

• Consistência: Em cenários onde o numero de rótulos é bem menor que o
número de atributos como os conjuntos Image e Scene, o ML-TSKC FS ainda
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apresenta um desempenho semelhante aos melhores da Literatura, mostrando
que ele pode ser eficaz em diferentes níveis de complexidade.

Os resultados mostram que o ML-TSKC FS não só é preciso, mas também con-
segue capturar bem a relação entre rótulos. Sua vantagem sobre métodos mais
complexos sugere que ele é uma alternativa prática e interpretável para classificação
multi-rótulo.

Dataset ML-kNN HNOML MLSF CC BR C2AE BP-MLL JBNN ML-TSK FS ML-TSKC FS

Bibtex 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.14(0.02) 0.02(0.00) 0.02(0.00) 0.01(0.00) 0.01(0.00)

Birds 0.05(0.00) 0.05(0.00) 0.05(0.01) 0.05(0.00) 0.06(0.00) 0.15(0.01) 0.18(0.02) 0.05(0.01) 0.05(0.00) 0.04(0.01)

CAL500 0.14(0.00) 0.14(0.01) 0.14(0.00) 0.14(0.00) 0.14(0.00) 0.19(0.01) 0.29(0.00) 0.14(0.00) 0.14(0.00) 0.13(0.00)

Corel16k1 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.21(0.02) 0.12(0.00) 0.02(0.00) 0.02(0.00) 0.01(0.00)

Emotions 0.26(0.01) 0.21(0.01) 0.24(0.02) 0.21(0.02) 0.20(0.01) 0.41(0.03) 0.22(0.02) 0.20(0.00) 0.19(0.01) 0.19(0.01)

Flags 0.33(0.03) 0.27(0.01) 0.26(0.05) 0.27(0.03) 0.27(0.03) 0.42(0.03) 0.30(0.04) 0.30(0.01) 0.26(0.03) 0.25(0.01)

Image 0.20(0.01) 0.23(0.02) 0.21(0.01) 0.19(0.03) 0.18(0.01) 0.46(0.04) 0.21(0.01) 0.21(0.00) 0.18(0.01) 0.18(0.00)

Mirflickr 0.15(0.00) 0.15(0.00) 0.15(0.00) 0.16(0.00) 0.16(0.01) 0.30(0.03) 0.31(0.00) 0.15(0.00) 0.15(0.00) 0.15(0.00)

Rev1s1 0.03(0.00) 0.03(0.00) 0.03(0.00) 0.03(0.00) 0.03(0.00) 0.17(0.02) 0.04(0.00) 0.03(0.00) 0.03(0.00) 0.02(0.00)

Rev1s2 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00) 0.17(0.03) 0.03(0.00) 0.03(0.00) 0.02(0.00) 0.02(0.00)

Scene 0.09(0.00) 0.12(0.00) 0.09(0.01) 0.10(0.01) 0.10(0.01) 0.41(0.03) 0.11(0.00) 0.14(0.00) 0.10(0.01) 0.10(0.01)

Yeast 0.19(0.01) 0.30(0.00) 0.19(0.00) 0.21(0.01) 0.19(0.00) 0.34(0.04) 0.22(0.01) 0.21(0.01) 0.20(0.01) 0.19(0.01)

Tabela 4.12: Resultados de (HL): Classificadores vs. ML TKSC-FS

Figura 4.8: Diagrama de barras de (HL): Classificadores vs. ML
TKSC-FS

Análise Comparativa de HL Baseando-se na Tabela 4.12 e na Figura 4.8, que
apresentam os resultados de HL comparando o ML-TSKC FS com os modelos da
literatura, podemos destacar as seguintes observações:

• Redução Significativa de Erros em Múltiplos Conjuntos de Dados: O
modelo ML-TSKC FS apresentou valores de HL menores em vários conjuntos
de dados, incluindo Bibtex, Birds e Flags. Isso demonstra que ele é eficaz em
minimizar erros de classificação, mesmo em tarefas multi-rótulo complexas.
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• Consistência em Conjuntos de Dados com Estruturas Variadas: Em
conjuntos de dados onde a complexidade da estrutura de rótulos é mais baixa,
como Image e Scene, o ML-TSKC FS também alcançou resultados sólidos.
Essa consistência sugere que o modelo é robusto e pode ser eficaz em diferentes
contextos de classificação multi-rótulo.

Os resultados indicam que o ML-TSKC FS é não só eficiente em reduzir erros,
mas também robusto ao lidar com diferentes tipos de dados e configurações de
rótulos. Sua performance consistente e interpretabilidade tornam-no uma escolha
prática para aplicações de classificação multi-rótulo, especialmente em cenários onde
a simplicidade e precisão são fundamentais.

Dataset ML-kNN HNOML MLSF CC BR C2AE BP-MLL JBNN ML-TSK FS ML-TSKC FS

Bibtex 0.21(0.01) 0.07(0.00) 0.14(0.01) 0.09(0.00) 0.08(0.00) 0.42(0.01) 0.08(0.01) 0.97(0.00) 0.07(0.00) 0.06(0.00)

Birds 0.16(0.01) 0.09(0.02) 0.08(0.02) 0.10(0.01) 0.10(0.02) 0.21(0.02) 0.10(0.01) 0.37(0.03) 0.09(0.02) 0.07(0.02)

CAL500 0.18(0.00) 0.14(0.08) 0.18(0.01) 0.23(0.01) 0.19(0.00) 0.16(0.19) 0.19(0.00) 0.28(0.02) 0.18(0.00) 0.17(0.00)

Core116k1 0.17(0.00) 0.15(0.00) 0.14(0.01) 0.16(0.00) 0.16(0.00) 0.30(0.02) 0.15(0.00) 0.75(0.02) 0.14(0.00) 0.14(0.00)

Emotions 0.26(0.02) 0.16(0.02) 0.11(0.02) 0.18(0.01) 0.17(0.02) 0.43(0.03) 0.16(0.01) 0.23(0.03) 0.15(0.02) 0.14(0.01)

Flags 0.24(0.04) 0.22(0.01) 0.12(0.02) 0.23(0.05) 0.22(0.04) 0.36(0.08) 0.21(0.03) 0.23(0.04) 0.21(0.02) 0.20(0.03)

Image 0.22(0.02) 0.18(0.02) 0.10(0.01) 0.18(0.03) 0.17(0.02) 0.52(0.03) 0.17(0.02) 0.37(0.05) 0.17(0.03) 0.18(0.02)

Mirflickr 0.21(0.00) 0.21(0.00) 0.26(0.00) 0.24(0.00) 0.32(0.04) 0.25(0.02) 0.21(0.01) 0.53(0.05) 0.20(0.00) 0.19(0.00)

Rcvlsl 0.09(0.00) 0.04(0.00) 0.08(0.01) 0.07(0.00) 0.06(0.00) 0.31(0.01) 0.07(0.01) 0.90(0.02) 0.05(0.00) 0.04(0.00)

Rcv1s2 0.09(0.00) 0.04(0.00) 0.06(0.00) 0.07(0.00) 0.06(0.00) 0.35(0.03) 0.07(0.01) 0.88(0.02) 0.05(0.00) 0.04(0.00)

Scene 0.08(0.01) 0.08(0.01) 0.04(0.01) 0.09(0.01) 0.08(0.01) 0.49(0.01) 0.07(0.00) 0.41(0.04) 0.08(0.01) 0.08(0.01)

Yeast 0.17(0.01) 0.34(0.00) 0.13(0.01) 0.21(0.00) 0.16(0.00) 0.30(0.02) 0.18(0.01) 0.23(0.03) 0.17(0.01) 0.16(0.01)

Tabela 4.13: Resultados de (RL): Classificadores vs. ML TKSC-FS

Figura 4.9: Diagrama de barras de (RL): Classificadores vs. ML
TKSC-FS

Análise Comparativa de RL Com base na Tabela 4.13 e na Figura 4.9, que
comparam os valores de RL entre o modelo ML-TSKC FS e outros modelos de
referência da literatura, podemos chegar as seguintes conclusões:
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• Desempenho Superior e Consistente em Diversos Conjuntos de Da-
dos: O ML-TSKC FS apresentou valores de RL baixos em conjuntos como
Bibtex, Birds e Mirflickr, e manteve resultados equivalentes em Corel16k1,
Rcv1s1 e Rcv1s2. Esse desempenho destaca a capacidade do modelo em orde-
nar corretamente os rótulos mais relevantes em tarefas de classificação multi-
rótulo, evidenciando sua eficiência em cenários onde a priorização precisa dos
rótulos é essencial.

• Consistência em Conjuntos de Dados Mais Complexos: Em conjuntos
como CAL500, Emotions, Flags, Image, Scene e Yeast, os modelos HNOML
e MLSF alcançaram desempenho superior na métrica de RL. Esse resultado
é esperado, pois o HNOML foi projetado para lidar com ruídos tanto nas
características quanto nos rótulos, enquanto o MLSF adota uma seleção de
características que foca nas mais relevantes para cada conjunto de rótulos es-
pecíficos. Essas capacidades permitem que esses modelos mantenham uma
ordenação mais precisa dos rótulos, reduzindo a penalização na métrica RL.
Ainda assim, o ML-TSKC FS apresentou resultados competitivos nesses con-
juntos, demonstrando robustez mesmo em cenários desafiadores.

Os resultados indicam que o ML-TSKC FS é eficaz em priorizar e ordenar rótulos
relevantes em cerca de metade dos conjuntos testados e mantém desempenho com-
petitivo nos demais, quando comparado a métodos mais complexos da literatura.
Sua performance consistente e robusta em diferentes conjuntos de dados reforça
sua viabilidade como solução para tarefas de classificação multi-rótulo, sendo uma
alternativa prática e interpretável para esses cenários.

Dataset ML-kNN HNOML MLSF CC BR C2AE BP-MLL JBNN ML-TSK FS ML-TSKC FS

Bibtex 0.34(0.01) 0.13(0.00) 0.35(0.02) 0.18(0.00) 0.16(0.00) 0.56(0.01) 0.14(0.02) 0.61(0.00) 0.12(0.01) 0.12(0.00)

Birds 0.19(0.01) 0.12(0.03) 0.17(0.05) 0.13(0.01) 0.13(0.01) 0.22(0.03) 0.13(0.02) 0.23(0.04) 0.11(0.03) 0.09(0.03)

Cal500 0.75(0.01) 0.77(0.06) 0.76(0.03) 0.89(0.02) 0.79(0.01) 0.79(0.08) 0.76(0.02) 0.91(0.01) 0.73(0.01) 0.72(0.02)

Core116k1 0.33(0.00) 0.31(0.00) 0.39(0.02) 0.33(0.01) 0.31(0.01) 0.53(0.03) 0.30(0.01) 0.71(0.00) 0.29(0.00) 0.27(0.01)

Emotions 0.38(0.02) 0.30(0.02) 0.33(0.03) 0.31(0.03) 0.30(0.03) 0.32(0.03) 0.37(0.01) 0.20(0.03) 0.28(0.03) 0.28(0.01)

Flags 0.56(0.02) 0.54(0.03) 0.54(0.04) 0.56(0.03) 0.55(0.02) 0.54(0.02) 0.48(0.04) 0.53(0.03) 0.52(0.01) 0.53(0.03)

Image 0.23(0.02) 0.20(0.02) 0.24(0.01) 0.20(0.03) 0.19(0.02) 0.24(0.03) 0.21(0.02) 0.17(0.04) 0.18(0.02) 0.19(0.02)

Mirflickr 0.44(0.00) 0.44(0.00) 0.45(0.00) 0.52(0.01) 0.62(0.04) 0.46(0.02) 0.39(0.00) 0.60(0.01) 0.42(0.00) 0.42(0.01)

Rcvlsl 0.20(0.00) 0.11(0.00) 0.24(0.04) 0.17(0.01) 0.14(0.01) 0.50(0.02) 0.15(0.01) 0.65(0.01) 0.11(0.00) 0.11(0.01)

Rcv1s2 0.19(0.01) 0.11(0.00) 0.19(0.01) 0.16(0.01) 0.14(0.01) 0.53(0.04) 0.14(0.01) 0.62(0.01) 0.12(0.01) 0.10(0.01)

Scene 0.08(0.01) 0.08(0.01) 0.08(0.01) 0.09(0.01) 0.08(0.01) 0.26(0.01) 0.09(0.00) 0.14(0.03) 0.08(0.01) 0.08(0.01)

Yeast 0.45(0.02) 0.62(0.01) 0.48(0.03) 0.51(0.02) 0.44(0.01) 0.47(0.03) 0.47(0.01) 0.48(0.05) 0.46(0.01) 0.45(0.01)

Tabela 4.14: Resultados de (CV): Classificadores vs. ML TKSC-FS
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Figura 4.10: Diagrama de barras de (CV): Classificadores vs. ML
TKSC-FS

Análise Comparativa de CV Com base na Tabela 4.14 e na Figura 4.10, que
comparam os valores de CV entre o modelo ML-TSKC FS e outros modelos de
referência da literatura, podemos chegar as seguintes conclusões:

• Desempenho Superior e Consistente em Diversos Conjuntos de Da-
dos: O ML-TSKC FS apresentou valores de CV baixos em conjuntos como
Birds, Cal500, Corel16k1 e Rcv1s2, e manteve resultados equivalentes em Bib-
tex, Rcv1s1 e Scene. Esse desempenho indica que o ML-TSKC FS é capaz
de identificar os rótulos mais relevantes em profundidade mínima, o que é
fundamental para aplicações em que a ordenação correta dos rótulos impacta
diretamente a utilidade das previsões.

• Competição com Modelos de Rede Neural: Em vários casos, o ML-
TSKC FS teve um desempenho comparável ou superior aos modelos baseados
em redes neurais profundas, como o BP-MLL e o JBNN. Esses modelos são
geralmente projetados para capturar a complexidade e interdependência en-
tre rótulos, mas o ML-TSKC FS consegue resultados competitivos com uma
abordagem mais simples e interpretável. Essa característica faz do ML-TSKC
FS uma alternativa interessante para tarefas que requerem um balanceamento
entre eficácia e interpretabilidade.

• Consistência em Cenários de Menor Complexidade: Nos conjuntos de
dados com menor densidade de rótulos, como Scene e Yeast, o ML-TSKC FS
ainda mantém desempenho competitivo, com valores de Cobertura semelhan-
tes ao modelo BR. Isso demonstra que o modelo é adaptável a diferentes níveis
de complexidade, mantendo a eficácia em contextos variados sem perda de
performance significativa.

Em resumo, os resultados para a métrica de CV mostram que o ML-TSKC FS
é eficiente na ordenação de rótulos e na priorização dos rótulos mais relevantes
em metade dos conjuntos testados, mantendo desempenho competitivo nos
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demais. Sua consistência e robustez, aliadas à facilidade de interpretação,
tornam o ML-TSKC FS uma alternativa prática e eficaz para problemas de
classificação multi-rótulo em comparação com métodos mais complexos da
literatura.

Concluindo, o ML-TSKC FS se mostrou uma alternativa eficiente e interpretável,
com desempenho competitivo ou superior a muitos modelos da literatura, incluindo
redes neurais profundas. Sua abordagem baseada na Integral de Choquet permite
capturar bem as interações entre rótulos, resultando em uma classificação precisa
e com menos erros, tornando-o uma escolha promissora para diversas aplicações de
classificação multi-rótulo.

Estudo comparativo estatístico entre o ML-TSKC FS e Modelos de
Referência da Literatura

Nesta seção, fizemos um estudo comparativo para avaliar a performance do ML-
TSKC FS em relação aos principais modelos da literatura para classificação multi-
rótulo. Usamos o teste de Friedman para ver se havia diferenças significativas
entre os modelos, e depois aplicamos o teste pós-hoc de Bonferroni-Dunn para
comparações detalhadas entre pares de modelos.

• Aplicação do Teste de Friedman: Para verificar se havia diferenças sig-
nificativas entre o desempenho do ML-TSKC FS e dos modelos de referência,
aplicamos o teste de Friedman em cada métrica de avaliação: Average Precision
(AP), Hamming Loss (HL), Ranking Loss (RL) e Coverage (CV).

• Resultados do Teste de Friedman

Os resultados do teste de Friedman para cada métrica estão na Tabela 4.15.
Observamos que para todas as métricas o valor p foi menor que 0.05, o que
significa que podemos rejeitar a hipótese nula e concluir que há diferenças
significativas entre os modelos.

Métrica Estatística de Friedman Valor p

Average Precision (AP) 21.27 < 0.001
Hamming Loss (HL) 11.78 < 0.001
Ranking Loss (RL) 16.27 < 0.001
Coverage (CV) 9.86 < 0.001

Tabela 4.15: Resultados do Teste de Friedman para cada métrica de
avaliação

• Análise Post-hoc Bonferroni-Dunn: Com a confirmação de que existem
diferenças significativas, realizamos uma análise mais detalhada usando o teste
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pós-hoc de Bonferroni-Dunn. Este teste ajuda a identificar quais modelos têm
desempenho significativamente inferior ao ML-TSKC FS.

• Diagrama de Diferenças Críticas (CD)

O (CD) é usado para representar graficamente a comparação do desempenho
de diferentes modelos em relação a uma métrica específica, com base no teste
estatístico pós-hoc Bonferroni-Dunn. Este diagrama oferece uma visão clara
e intuitiva das relações entre os modelos, destacando aqueles que apresentam
diferenças estatisticamente significativas.

No diagrama, cada modelo é representado por uma linha horizontal, e suas
posições relativas refletem as classificações médias (rankings) obtidas para a
métrica analisada. As principais características do diagrama são descritas a
seguir:

– Classificação Média (Ranking):

∗ Os modelos são dispostos de acordo com suas classificações médias,
calculadas com base nos resultados da métrica em análise.

– Barra de Diferenças Críticas (CD):

∗ A barra horizontal vermelha conecta os modelos cujas diferenças de
desempenho não são estatisticamente significativas, de acordo com o
intervalo crítico calculado.

∗ O valor da Diferença Crítica (CD), indicado no topo do diagrama,
é obtido utilizando a Eq.(4.7). Ele define o limite acima do qual as
diferenças nos rankings são consideradas significativas.

– Linhas de Conexão:

∗ Linhas conectam modelos cujas diferenças estão dentro do intervalo
crítico de (CD), indicando desempenhos estatisticamente semelhan-
tes.

∗ A ausência de conexão entre dois modelos implica diferenças estatis-
ticamente significativas entre eles.

A seguir, apresentamos os diagramas de Diferenças Críticas para as diferen-
tes métricas analisadas, acompanhados de suas respectivas conclusões. Essa
abordagem gráfica complementa os testes estatísticos numéricos previamente
realizados, proporcionando uma interpretação visual e acessível das diferenças
entre os modelos.

• Diagrama de Diferenças Críticas (CD) para a métrica AP
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Figura 4.11: Diagrama de CD para a métrica AP: ML-TSKC FS vs
Modelos da Literatura.

• Conclusões para a Métrica AP

Com base no diagrama de diferenças críticas para a métrica AP, tiramos as
seguintes conclusões sobre o desempenho do modelo ML-TSKC FS em com-
paração com os principais modelos da literatura.

– Desempenho do ML-TSKC FS: O ML-TSKC FS teve a melhor clas-
sificação média, indicando que seu desempenho foi consistentemente su-
perior aos outros modelos. Isso reforça que a inclusão da Integral de
Choquet ajuda a capturar melhor as interações complexas entre os rótu-
los.

– Comparação com Modelos de Referência: O ML-TSKC FS mos-
trou uma diferença significativa em relação a modelos como ML-kNN ,
HNOML , MLSF , CC , C2AE , BP-MLL e JBNN . Esse diferencial
sugere que a metodologia neuro-fuzzy com a Integral de Choquet permite
capturar melhor as interdependências entre rótulos.

– Comparação com o ML-TSK FS e Modelos Fuzzy: A diferença
entre o ML-TSKC FS , o ML-TSK FS e o BR foi menor, indicando que o
uso da Integral de Choquet adiciona melhorias graduais. Essa vantagem
é especialmente relevante para dados com interdependências complexas
entre rótulos.

Em resumo para a métrica AP o diagrama de diferenças críticas confirma que
o ML-TSKC FS não só supera os modelos tradicionais, mas também apre-
senta uma melhoria incremental em relação ao ML-TSK FS. Esses resultados
indicam que a aplicação da Integral de Choquet é uma solução eficaz para
melhorar a precisão na classificação multi-rótulo.

• Diagrama de Diferenças Críticas (CD) para a métrica HL
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Figura 4.12: Diagrama de Diferenças Críticas (CD) para a métrica
HL: ML-TSKC FS vs Modelos da Literatura.

• Conclusões do Estudo Comparativo com Base na Métrica de HL

A análise do diagrama de diferenças críticas (CD) para a métrica HL mostra
o desempenho do modelo ML-TSKC FS em comparação com outros modelos
da literatura.

– Desempenho do ML-TSKC FS: O ML-TSKC FS teve a melhor clas-
sificação média, indicando que seu desempenho foi consistentemente su-
perior aos outros modelos. Isso reforça que a inclusão da Integral de
Choquet ajuda a melhorar a precisão e a confiabilidade.

– Comparação com Modelos de Referência: O ML-TSKC FS mostrou
uma diferença significativa em relação a modelos como HNOML , C2AE ,
BP-MLL e JBNN . Esse diferencial sugere que a metodologia neuro-fuzzy
com a Integral de Choquet permite capturar melhor as interdependências
entre rótulos.

– Comparação com o ML-TSK FS e Modelos Fuzzy: A diferença
entre o ML-TSKC FS e os classificadores ML-TSK FS , ML-kNN ,
MLSF , CC , e BR foi menor, indicando que não a diferença significativa.

A análise da métrica HL confirma que o ML-TSKC FS oferece um desempenho
superior e consistente, especialmente em comparação com modelos tradicionais
e redes neurais. Isso o torna uma escolha sólida para tarefas de classificação
multi-rótulo, onde é essencial controlar erros e manter a precisão.

• Diagrama de Diferenças Críticas (CD) para a métrica RL
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Figura 4.13: Diagrama de Diferenças Críticas (CD) para a métrica
RL: ML-TSKC FS vs Modelos da Literatura.

• Conclusões do Estudo Comparativo com Base na Métrica de RL

O diagrama de diferenças críticas (CD) para a métrica RL mostra o desempe-
nho do modelo ML-TSKC FS em comparação com outros modelos da litera-
tura.

– Desempenho do ML-TSKC FS: O ML-TSKC FS teve a melhor clas-
sificação média, indicando que seu desempenho foi consistentemente su-
perior aos outros modelos.

– Comparação com Modelos de Referência: O ML-TSKC FS mostrou
uma diferença significativa em relação a modelos como CC , ML-kNN
, C2AE e JBNN . Esse diferencial sugere que a metodologia neuro-
fuzzy com a Integral de Choquet permite ordenar corretamente os rótulos
relevantes.

– Comparação com o ML-TSK FS e Modelos Fuzzy: A diferença en-
tre o ML-TSKC FS e os classificadores ML-TSK FS , MLSF , HNOML
, BP-MLL , e BR foi menor, indicando que o ganho não foi suficiente
para obter uma diferença significativa.

O diagrama de diferenças críticas para a métrica RL reforça a posição do
ML-TSKC FS como uma abordagem eficaz para a classificação multi-rótulo e
reforça sua viabilidade como uma solução alternativa prática e interpretável
para esses cenários.

• Diagrama de Diferenças Críticas (CD) para a métrica CV
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Figura 4.14: Diagrama de Diferenças Críticas (CD) para a métrica
CV: ML-TSKC FS vs Modelos da Literatura.

• Conclusões do Estudo Comparativo com Base na Métrica de CV

A análise do diagrama de diferenças críticas (CD) para a métrica de CV mostra
o desempenho do modelo ML-TSKC FS em comparação com outros modelos
da literatura.

– Desempenho do ML-TSKC FS: O ML-TSKC FS teve a melhor clas-
sificação média, indicando que seu desempenho foi consistentemente su-
perior aos outros modelos. Isso reforça que a inclusão da Integral de
Choquet ajuda a minimizar o esforço para alcançar os rótulos corretos na
lista.

– Comparação com Modelos de Referência: O ML-TSKC FS mos-
trou uma diferença significativa em relação a modelos como ML-kNN ,
MLSF , CC , JBNN e C2AE . Esse diferencial sugere que a metodo-
logia neuro-fuzzy com a Integral de Choquet permite capturar melhor as
interdependências entre rótulos.

– Comparação com o ML-TSK FS e Modelos Fuzzy: A diferença
entre o ML-TSKC FS e os classificadores ML-TSK FS , HNOML ,
BP-MLL e BR foi menor, indicando que não a diferença significativa.

O diagrama de diferenças críticas para a métrica CV reforça a posição do ML-
TSKC FS como uma solução para classificação multi-rótulo em cenários onde é
importante a otimização da profundidade de cobertura dos rótulos é relevante

4.2.4 Conclusão do capítulo

Neste capítulo, foi analisado o desempenho do modelo ML-TSKC-FS em conjuntos
de dados de classificação multi-rótulo, destacando sua versatilidade e eficácia.

Na primeira parte do estudo, os resultados dos testes estatísticos de Wilcoxon
indicaram que o modelo ML-TSKC-FS, ao utilizar a Integral de Choquet nos ante-
cedentes das regras, superou o modelo ML-TSK FS em várias métricas, confirmando
que as melhorias obtidas são estatisticamente significativas.
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Na segunda parte, que comparou o ML-TSKC-FS com modelos consolidados
da literatura, os testes de Friedman e as Diferenças Críticas de Bonferroni-Dunn
mostraram que o ML-TSKC-FS obteve a melhor classificação média, indicando um
desempenho consistentemente superior em relação a outros modelos. Embora essas
melhorias não tenham sido suficientes para superar estatisticamente todos os mé-
todos, o modelo proposto superou vários deles, incluindo redes neurais profundas e
métodos especializados.

Esses resultados comprovam a robustez e a eficácia do modelo ML-TSKC-FS,
posicionando-o como uma abordagem promissora na área de classificação multi-
rótulo neuro-fuzzy. A inclusão da Integral de Choquet mostrou-se fundamental
para aprimorar a capacidade do modelo em capturar as interações entre atributos
e rótulos, resultando em um desempenho estatisticamente superior em relação a
diversos modelos. Essa melhoria torna o ML-TSKC-FS uma alternativa vantajosa
para aplicações práticas que exigem precisão e interpretabilidade.
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CONCLUSÃO

A principal contribuição deste trabalho foi a introdução do modelo ML-TSKC FS,
um sistema neuro-fuzzy desenvolvido para a classificação multi-rótulo, que se des-
taca por utilizar a integral de Choquet na agregação de informações para a ativação
das regras no sistema de inferência. Essa abordagem oferece uma solução flexível
e robusta para a tarefa de classificação multi-rótulo, especialmente ao lidar com a
imprecisão, ambiguidade e incerteza presentes nos dados. Ao capturar as interações
entre diferentes atributos, o modelo ML-TSKC FS melhora a precisão e a consistên-
cia dos resultados.

Resposta à pergunta de pesquisa
Com base nos resultados obtidos, podemos responder à nossa pergunta de pes-

quisa.
A inclusão da Integral Discreta de Choquet na agregação de atributos para cal-

cular a ativação das regras em um modelo de classificação multi-rótulo neuro-fuzzy
pode levar a uma melhoria no desempenho do modelo original?

Sim, os resultados apresentados neste trabalho confirmam que a aplicação da
Integral Discreta de Choquet na agregação de atributos melhora o desempenho do
modelo em sistemas de classificação multi-rótulo neuro-fuzzy. A integração dessa
técnica aprimorou a capacidade do modelo proposto ML-TSKC-FS de capturar as
interações complexas entre atributos, proporcionando resultados estatisticamente
superiores em relação ao modelo original. Esse ganho de desempenho posiciona o
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modelo como uma abordagem promissora e vantajosa para aplicações práticas que
exigem precisão e interpretabilidade.

5.1 Contribuições e Resultados Principais

Os principais resultados e contribuições deste trabalho podem ser resumidos como:

• Flexibilidade: A inclusão da integral de Choquet nos antecedentes das regras
oferece uma forma mais adaptável de agregar informações, captando nuances
que métodos tradicionais não conseguem abordar.

• Modelagem de Interações Complexas: A inclusão de medidas fuzzy, per-
mite uma análise detalhada da sinergia entre atributos, essencial para repre-
sentar adequadamente a complexidade dos dados de entrada e melhorar a
consistência e precisão dos resultados.

• Desempenho Superior em Classificação Multi-Rótulo: O modelo ML-
TSKC FS demonstrou desempenho superior em termos de precisão e robustez,
adaptando-se bem a diferentes bases de dados com múltiplos rótulos e exibindo
uma menor taxa de erro quando comparado a modelos tradicionais.

• Maior Adaptabilidade: O modelo pode ajustar dinamicamente a influência
de cada atributo com base em sua importância combinada com outros. Isso é
particularmente benéfico em problemas de classificação multi-rótulo, onde as
interações frequentemente exibem relações complexas.

• Maior Precisão: Ao considerar as relações intrínsecas entre os atributos,
a integral de Choquet pode levar a previsões mais precisas em tarefas de-
safiadoras de classificação multi-rótulo, onde múltiplas saídas são igualmente
importantes e as interações entre os atributos desempenham um papel crucial.

Essas vantagens se refletem em duas áreas principais de contribuição primeiro,
no aumento da precisão estatística do modelo ao competir em diferentes métricas e,
segundo, na capacidade de integração em sistemas complexos de inferência fuzzy.

5.2 Limitações do Trabalho

Apesar dos resultados promissores, este trabalho possui algumas limitações que de-
vem ser consideradas:

• Dependência da Complexidade Computacional: A utilização da integral
de Choquet, apesar de proporcionar ganhos em precisão, exige maior poder
computacional em comparação com operadores tradicionais.
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• Necessidade de Ajuste dos Parâmetros Fuzzy: A configuração dos pa-
râmetros fuzzy, incluindo pesos da integral de Choquet, requer um ajuste cui-
dadoso.

• Escalabilidade para Conjuntos de Dados Extensos: Embora o modelo
tenha se mostrado eficiente em conjuntos de dados de tamanho médio, a sua
aplicação em dados extremamente volumosos pode ser limitada pois o custo
de execução e o custo de equipamento necessário para executar o código au-
mentaria em grão medida.

5.3 Trabalhos Futuros

Com base nas limitações e descobertas deste trabalho, as pesquisas futuras se con-
centrarão em áreas-chave.

• O uso de outras medidas fuzzy no modelo poderia melhorar seu desempenho.

• Generalizações da Integral de Choquet podem oferecer um processo de agrega-
ção mais refinado, aprimorando ainda mais a precisão da classificação multi-
rótulo.

• Estudaremos adaptações do modelo para o caso de conjuntos de dados semi-
rotulados (como, por exemplo, em [Gull e Aguilar 2024]).

• Automatização da Configuração de Parâmetros Fuzzy, desenvolver algoritmos
de aprendizado de máquina que ajustem automaticamente os parâmetros fuzzy,
visando melhorar a adaptabilidade do modelo.

• Ampliar o escopo do modelo em diferentes bases de dados e métricas, inves-
tigando como a adaptação da integral de Choquet impacta novas áreas de
classificação.

• Aplicações Práticas da Integral de Choquet, validar o modelo em cenários reais,
como previsão de demanda em mercados dinâmicos ou diagnóstico médico,
para testar a eficácia em ambientes práticos.
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Apêndice A: Código Utilizado
no Estudo

Este apêndice apresenta o código utilizado no estudo, desenvolvido em Matlab como
uma modificação do trabalho de [Lou et al. 2021]. A implementação incorpora
a Integral de Choquet e explora diferentes medidas fuzzy, permitindo modelar de
maneira mais robusta as interações complexas entre atributos em sistemas multi-
rótulo.

Estrutura do Código

A seguir, detalhamos a estrutura do código, destacando as principais etapas e fun-
cionalidades.

1. Configuração Inicial de Parâmetros

O código inicia configurando os parâmetros de busca (alpha, beta, gamma, k, h),
que são fundamentais para o processo de otimização do modelo. Esses parâmetros
definem o espaço de busca para os hiperparâmetros e influenciam diretamente os
resultados obtidos.

1 function [ BestParameter , BestResult ] =
ML_TSKFS_adaptive_validate (data , target , oldOptmParameter ,
TSKoptions )

2 optmParameter = oldOptmParameter ;
3 alpha_searchrange = oldOptmParameter . alpha_searchrange ;
4 beta_searchrange = oldOptmParameter . beta_searchrange ;
5 gamma_searchrange = oldOptmParameter . gamma_searchrange ;
6

7 k_searchrange = TSKoptions . k_searchrange ;
8 h_searchrange = TSKoptions . h_searchrange ;
9 q_s = 1;

10

11 total = length ( alpha_searchrange ) * length ( beta_searchrange ) * ...
12 length ( gamma_searchrange ) * length ( k_searchrange ) * length

( h_searchrange );

123



124 Bibliografia

2. Busca Otimizada por Hiperparâmetros

Nesta etapa, o código realiza uma busca exaustiva pelos melhores hiperparâmetros.
Essa busca cobre todas as combinações possíveis dos valores definidos, utilizando
laços aninhados. A cada iteração, o modelo é avaliado, e os resultados são registrados
para análise.

1 index = 1;
2 parameter_cell = zeros(total , 35);
3 ii = 1;
4 for p = 1: length ( k_searchrange )
5 for q = 1: length ( h_searchrange )
6 TSKoptions .k = k_searchrange (p);
7 TSKoptions .h = h_searchrange (q);
8 [v, b] = gene_ante_fcm (data , TSKoptions );
9 [ G_data ] = calc_x_gf (data , v, b);

10

11 train_data = G_data ;
12 num_train = size(train_data , 1);
13 randorder = randperm ( num_train );
14

15 BestResult = zeros (15, 1);
16 num_cv = 5;
17

18 for i = 1: length ( alpha_searchrange )
19 for j = 1: length ( beta_searchrange )
20 for k = 1: length ( gamma_searchrange )
21 fprintf (’\n- %d/%d: TSK_k = %f, TSK_h = %f,

alpha = %f, beta = %f, gamma = %f’, ...
22 index , total , k_searchrange (p),

h_searchrange (q), ...
23 alpha_searchrange (i), beta_searchrange

(j), gamma_searchrange (k));
24 index = index + 1;

3. Função da Integral de Choquet

Inclui-se a função de cálculo da Integral de Choquet, utilizada como parte do modelo.

1 function [x_g] = calc_x_gf (x,v,b)
2 n_examples = size(x ,1);
3 x_e = [x,ones(n_examples ,1) ];
4

5 [k,d] = size(v);
6

7 B = [];
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8

9 p = 2;
10 q = 2;
11

12

13 for i=1:k
14

15 v1 = repmat (v(i ,:) ,n_examples ,1);
16 bb = repmat (b(i ,:) ,n_examples ,1);
17

18

19 v2 = exp (-(x-v1) .^2./(2* bb .^2));
20

21

22 v3 = v2 -v2;
23 [A,I]= sort(v2 ,2);
24

25

26 q_t = 4;
27 switch (q_t)
28 case 1
29 wt(:,i) = exp(-sum ((x-v1) .^2./(2* bb) ,2));
30 case 2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 wt(:,i) = min(v2 ,[] ,2);
32 case 3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33 wt(:,i) = max(v2 ,[] ,2);
34

35 case 4 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% medida uniforme
36 for j=1:d
37 if j == 1
38 v3(:,j) = A(:,j);
39

40 end
41 if j > 1
42 v3(:,j) = (A(:,j) - A(:,j -1)).*(d-j+1)/d;
43

44

45 end
46 end
47

48 wt(:,i) = sum(v3 ,2);
49 case 5 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% medida relativa
50 for j = 1:d
51 if j == 1
52 v3(:, j) = A(:, j);
53 B(j,k) = 1;
54 end
55

56 if j > 1



126 Bibliografia

57 PP = I;
58 QQ = I(:, j:d);
59

60 B(j,k) = sum(QQ(j, :)) / sum(PP(j, :));
61 v3(:, j) = (A(:, j) - A(:, j - 1)) * B(j,k);
62 end
63 end
64 % display (B);
65 wt(:, i) = sum(v3 , 2);
66 case 6 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% medida produto
67 for j = 1:d
68 if j == 1
69 v3(:, j) = A(:, j);
70

71 end
72

73 if j > 1
74

75 QQ = I(:, 1:j -1);
76

77 v3(:, j) = (A(:, j) - A(:, j - 1))./ prod(QQ ,2)
;

78 end
79 end
80

81 wt(:, i) = sum(v3 , 2);
82 case 7 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% medida potencia
83 for j=1:d
84 if j == 1
85 v3(:,j) = A(:,j);
86 end
87 if j > 1
88 v3(:,j) = (A(:,j) - A(:,j -1)).*((d-j+1)/d)^q;
89 end
90 end
91 wt(:,i) = sum(v3 ,2);
92 case 8 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% medida

ponderada
93 %QQ = rand(size(A));
94 QQ = A;
95 SQQ=sum(QQ ,2);
96 QQQ=QQ./ SQQ;
97 for j=1:d
98 if j == 1
99 v3(:,j) = A(:,j);

100 end
101 if j > 1
102 v3(:,j) = (A(:,j) - A(:,j -1)).* sum(QQQ (:,j:d)

,2) + eps;
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103 end
104 end
105 wt(:,i) = sum(v3 ,2);
106

107

108 end
109

110

111 end
112

113

114 wt2 = sum(wt ,2);
115

116 % To avoid the situation that zeros are exist in the matrix wt2
117 ss = wt2 ==0;
118 wt2(ss ,:) = eps;
119 wt = wt./ repmat (wt2 ,1,k);
120

121

122

123

124

125 x_g = [];
126

127 for i=1:k
128 wt1 = wt(:,i);
129 wt2 = repmat (wt1 ,1,d+1);
130 x_g = [x_g ,x_e .* wt2 ];
131 end
132 end

4. Avaliação de Desempenho com Validação Cruzada

O desempenho do modelo é avaliado utilizando validação cruzada em k-dobras. O
código calcula métricas específicas para cada combinação de parâmetros e seleciona
os melhores com base nos critérios estabelecidos.

1 cv_index = 1;
2 TempResult = zeros(num_cv , 15);
3

4 for cv = 1: num_cv
5 [ cv_train_data , cv_train_target , cv_test_data , cv_test_target ]

= ...
6 generateCVSet (train_data , target ’, randorder , cv , num_cv );
7 [ model_LLSF ] = ML_TSKFS ( cv_train_data , cv_train_target ,

optmParameter );
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8 Outputs = ( cv_test_data * model_LLSF ) ’;
9 Pre_Labels = double (round( Outputs ) >= 1);

10 TempResult (cv_index , :) = EvaluationAll (Pre_Labels , Outputs ,
cv_test_target ’) ’;

11 cv_index = cv_index + 1;
12 end
13

14 Result = mean( TempResult ) ’;
15 STD = std( TempResult );

5. Resultados e Visualização

Por fim, o código apresenta os resultados em gráficos, permitindo uma análise visual
das métricas de desempenho e da convergência dos parâmetros.

1 figure ;
2 plot(rx(q, :), ry1(q, :), rx(q, :), ry2(q, :));
3 ylim ([0.0 , 1]);
4 xlabel ( I t e r a e s );
5 ylabel ( M t r i c a s de Desempenho );
6 grid on;

Conclusão

A estrutura do código foi desenvolvida para explorar os benefícios da Integral de
Choquet em sistemas fuzzy multi-rótulo. Utilizando loops aninhados e avaliações
sistemáticas, o código garante um ajuste fino dos parâmetros, resultando em um
modelo robusto e eficiente. As técnicas implementadas permitem modelar interações
complexas entre atributos, com base nas medidas fuzzy abordadas neste trabalho.



Apêndice B: Conjunto de Dados
Usados para Treinamento

Neste anexo, são apresentados exemplos dos atributos e rótulos dos primeiros quatro
conjuntos de dados utilizados para o treinamento e para a análise comparativa entre
o modelo proposto, ML TSKC-FS, e os modelos da literatura.

Conjunto de Dados BibTeX

O conjunto de dados BibTeX é amplamente utilizado em tarefas de aprendizado
de máquina multi-rótulo. Neste apêndice, são apresentadas informações detalhadas
sobre sua estrutura e formato.

Estrutura do Conjunto de Dados

O conjunto de dados BibTeX é composto por 7.395 instâncias, 1.836 atribu-
tos (termos extraídos dos documentos) e 159 rótulos (categorias). A Tabela 5.1
apresenta uma pequena amostra do conjunto de dados.

ID do
Documento

Termos (Atributos) Rótulos (Categorias)

1 learning, neural, network, model AI, Machine Learning
2 retrieval, information, database Information Retrieval, Databases
3 classification, fuzzy, logic Fuzzy Systems, AI
4 optimization, genetic, algorithm Optimization, Genetic Algorithms
5 data, mining, patterns Data Mining, Big Data

Tabela 5.1: Exemplo da Estrutura do Conjunto de Dados BibTeX

Formato Real do Conjunto de Dados

Os dados no BibTeX são armazenados no formato esparso, onde cada instância é
representada por vetores com os seguintes elementos:

1. Atributos: Representados como uma matriz esparsa com valores 0 ou 1,
indicando a ausência ou presença de termos no documento. Por exemplo:

[0, 1, 0, ..., 1, 0, 1] // Vetor de tamanho 1836.

129
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2. Rótulos: Uma matriz binária que indica se o documento pertence a cada uma
das 159 categorias. Exemplo:

[1, 0, 0, ..., 1, 0, 0] // Vetor de tamanho 159.

Formato Original (Texto Bruto)

Caso o arquivo seja visualizado diretamente, o conteúdo do arquivo pode ser apre-
sentado no seguinte formato:

ID: 1

Features: {learning: 1, neural: 1, network: 1, model: 1, ...}

Labels: {AI: 1, Machine Learning: 1, ...}

Conjunto de Dados Birds

O conjunto de dados Birds é utilizado em tarefas de aprendizado de máquina multi-
rótulo, especialmente no reconhecimento e categorização de cantos de aves em gra-
vações de áudio. Este apêndice detalha a estrutura e o formato do conjunto de
dados.

Estrutura do Conjunto de Dados

O conjunto de dados Birds contém 645 instâncias, 260 atributos e 19 rótulos
(categorias de aves). A Tabela 5.2 apresenta uma amostra dos dados.

ID do Som Características (Atributos) Rótulos (Categorias de Aves)
1 freq1, freq2, pitch1, pitch2 Sparrow, Thrush
2 freq2, freq3, pitch3, tempo Robin, Crow
3 freq1, pitch1, tempo, volume Finch, Sparrow
4 freq4, pitch2, tempo, volume Warbler, Thrush
5 freq1, freq3, pitch1, pitch4 Crow, Finch

Tabela 5.2: Exemplo da Estrutura do Conjunto de Dados Birds

Formato Real do Conjunto de Dados

Os dados no conjunto Birds são armazenados no formato de matriz, em que cada
linha representa uma instância com suas características e rótulos:

1. Atributos: Representam características extraídas dos áudios, como frequên-
cias, pitch (tom), tempo e volume. Exemplo de vetor de atributos:
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[0.12, 0.35, 0.20, ..., 0.50]

O vetor tem dimensão 260.

2. Rótulos: Representam as espécies de aves detectadas na gravação. Cada
espécie é associada a um valor binário (0 ou 1). Exemplo de vetor de rótulos:

[1, 0, 0, ..., 1]

O vetor possui dimensão 19.

Formato Original (Texto Bruto)

Se o arquivo for visualizado diretamente, o conteúdo pode aparecer da seguinte
forma:

ID: 1

Features: {freq1: 0.12, freq2: 0.35, pitch1: 0.20, pitch2: 0.50, ...}

Labels: {Sparrow: 1, Thrush: 1, Robin: 0, Crow: 0, ...}

Conjunto de Dados CAL500

O conjunto de dados CAL500 é utilizado para tarefas de aprendizado de máquina
multi-rótulo, com foco na anotação automática de músicas. Este apêndice apresenta
detalhes sobre a estrutura e o formato deste conjunto de dados.

Estrutura do Conjunto de Dados

O conjunto de dados CAL500 é composto por 502 instâncias (músicas), 68 atri-
butos extraídos das características musicais e 174 rótulos (anotações de palavras-
chave relacionadas às músicas). A Tabela 5.3 apresenta uma pequena amostra.

ID da Música Atributos (Características) Rótulos (Anotações)
1 pitch, tempo, ritmo, harmonia Happy, Upbeat, Instrumental
2 ritmo, volume, melodia Sad, Slow, Acoustic
3 tempo, pitch, percussão Energetic, Loud, Rock
4 harmonia, melodia, ritmo Calm, Mellow, Jazz
5 volume, pitch, tempo Instrumental, Classical, Soft

Tabela 5.3: Exemplo da Estrutura do Conjunto de Dados CAL500
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Formato Real do Conjunto de Dados

Os dados do CAL500 são organizados da seguinte forma:

1. Atributos: Representam características extraídas das músicas, como pitch
(tom), tempo, ritmo, harmonia, volume e percussão. Exemplo de vetor de
atributos:

[0.23, 0.45, 0.67, ..., 0.12]

O vetor possui 68 dimensões.

2. Rótulos: São palavras-chave anotadas manualmente que descrevem o con-
teúdo emocional, instrumental e de gênero das músicas. Exemplo de vetor de
rótulos:

[Happy, Upbeat, Instrumental]

Cada música pode conter múltiplos rótulos, totalizando 174 categorias pos-
síveis.

Formato Original (Texto Bruto)

O conteúdo original do arquivo pode ser representado no seguinte formato:

ID: 1

Features: {pitch: 0.23, tempo: 0.45, ritmo: 0.67, harmonia: 0.12, ...}

Labels: {Happy, Upbeat, Instrumental}

Conjunto de Dados Corel16k1

O conjunto de dados Corel16k1 é amplamente utilizado em tarefas de aprendizado
de máquina multi-rótulo, com foco em recuperação e classificação de imagens. Este
apêndice apresenta informações detalhadas sobre sua estrutura e características.

Estrutura do Conjunto de Dados

O conjunto de dados Corel16k1 contém 13.766 instâncias (imagens), 500 atribu-
tos extraídos das características visuais e 153 rótulos (categorias). A Tabela 5.4
apresenta uma pequena amostra deste conjunto.
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ID da Imagem Atributos (Características Visuais) Rótulos (Categorias)
1 cor, textura, borda Montanha, Paisagem
2 cor, formato, textura Animal, Savana
3 borda, cor, intensidade Urbano, Arquitetura
4 textura, cor, brilho Praia, Oceano
5 cor, formato, borda Flores, Jardim

Tabela 5.4: Exemplo da Estrutura do Conjunto de Dados Corel16k1

Formato Real do Conjunto de Dados

Os dados no conjunto Corel16k1 são armazenados no formato matricial, onde cada
instância representa as características visuais de uma imagem.

1. Atributos: Representam características extraídas das imagens, como cor,
textura, borda, intensidade e brilho. Exemplo de vetor de atributos:

[0.12, 0.35, 0.67, ..., 0.89]

O vetor possui dimensão 500.

2. Rótulos: Cada imagem pode estar associada a múltiplos rótulos que repre-
sentam as categorias visuais da imagem. Exemplo de vetor de rótulos:

[Montanha, Paisagem]

No total, existem 153 rótulos diferentes.

Formato Original (Texto Bruto)

O formato original dos dados pode ser apresentado da seguinte forma:

ID: 1

Features: {cor: 0.12, textura: 0.35, borda: 0.67, ...}

Labels: {Montanha, Paisagem}

Em conclusão, este apêndice apresenta uma descrição mais detalhada dos quatro
primeiros conjuntos de dados, de acordo com a tabela apresentada no trabalho. Essa
descrição complementa as informações fornecidas anteriormente, oferecendo maior
clareza sobre as características dos dados utilizados no treinamento e na análise
comparativa do modelo ML TSKC-FS em relação aos modelos da literatura.
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