ANÁLISE DE RISCO DE INVASÃO DE PEIXES EXÓTICOS CULTIVADOS NO ENTORNO DA LAGOA DOS PATOS (RS)

DÉBORA FERNANDA AVILA TROCA

Tese apresentada ao Programa de Pós-graduação em Oceanografia Biológica da Universidade Federal do Rio Grande, como requisito parcial à obtenção do título de DOUTOR.

Orientador: Prof. Dr. João Paes Vieira

RIO GRANDE
Setembro de 2013
Dedico este trabalho a minha família, os melhores amigos que alguém poderia desejar.
AGRADECIMENTOS

Ao Prof. Dr. João Paes Vieira pela orientação deste trabalho e confiança depositada durante todos estes anos de convivência.

À banca, Prof. Dr. Jorge Pablo Castello, Prof. Dr. Carlos R. Tagliani, Prof. Dr. Alexandre Garcia, Prof. Dr. Luis H. Poersch, Prof. Dr Fernando Becker e Prof. Marinez Siqueira pela revisão e valiosas sugestões a este trabalho.

À minha mãe por cuidar de minha filha Thaís enquanto eu não podia estar presente e ajudar na sua criação durante essa jornada.

À Thaís por aguentar as dolorosas horas de ausência durante as viagens da mamãe e compreender que não podia estar sempre com ela, pois o “Tio João” ia ficar bravo se a mamãe não fosse trabalhar.

À amiga Valéria sempre companheira, nas horas divertidas e mal-humoradas (dela). Agradeço pelas críticas construtivas e pela tua delicadeza ao fazê-las. Obrigada pela paciência com as neuroses e incentivos que me destes durante todo esse tempo de convivência.

À minha família, minha filha, meu marido, meu pai, minha mãe e irmãs por estarem sempre juntos, é muito bom tê-los como referência. Agradeço em especial à minha irmã Renata, pelas revisões e pela competição saudável.

À Vera, secretária da Comissão de Curso da Pós-Graduação em Oceanografia Biológica.

A todos os colegas do laboratório de Ictiologia, atuais e passados.

A CAPES pela bolsa de Doutoramento e ao CNPq pelo auxílio financeiro na execução deste trabalho (Processos 476020/2009-3 e 561425/2010-8).

A todos, meus sinceros agradecimentos
Sumário

RESUMO ... 1
ABSTRACT ... 2
INTRODUÇÃO GERAL .. 3
HIPÓTESE E ESTRUTURA DO TRABALHO ... 6
OBJETIVOS ... 7
Objetivo Geral ... 7
Objetivos Específicos ... 7
METODOLOGIA GERAL ... 8
Área de estudo ... 8
Análise de Risco ... 9
SINTESE DOS RESULTADOS .. 11
CONSIDERAÇÕES FINAIS ... 14
LITERATURA CITADA .. 15
ANEXO I ... 19
ANEXO II .. 44
ANEXO III ... 74
ANEXO IV ... 99
ANEXO V ... 128
ANEXO VI ... 143
Os peixes são o grupo de animais aquáticos mais introduzidos em todo o mundo, principalmente devido à aquicultura. No Brasil, mais da metade da produção da aquicultura é baseada em espécies não nativas. Quando uma espécie é introduzida no ecossistema, existe o risco dela escapar para o ambiente natural, resultando em possíveis efeitos prejudiciais a biota nativa ou até mesmo ao funcionamento do ecossistema. Este trabalho foi realizado a fim de auxiliar as decisões dos gestores públicos sobre quais espécies seriam adequadas, sob o ponto de vista de sustentabilidade ambiental, ao uso na aquicultura na região costeira do RS. Foram desenvolvidos nesta tese cinco trabalhos visando criar uma metodologia de avaliação do risco de invasão, fundamentada no potencial invasor das espécies cultivadas (Anexo I - POTENCIAL INVASOR DOS PEIXES NÃO NATIVOS CULTIVADOS NA REGIÃO COSTEIRA DO RIO GRANDE DO SUL, BRASIL), nos modelos de distribuição de espécies, que indicam as áreas ambientalmente favoráveis ao estabelecimento da espécie (Anexo II – DISTRIBUIÇÃO POTENCIAL DOS PEIXES NÃO NATIVOS USADOS NA AQUICULTURA NO BRASIL (em inglês)), e no potencial de cada espécie quanto a capacidade de introdução, estabelecimento e impactos (Anexo III - ANÁLISE DE RISCO DE PEIXES INVASORES DA LAGOA DOS PATOS (RS)). Essas informações foram agrupadas, juntamente com o fator determinante da pressão de introduções a que a área de cultivo está exposta (pressão de propágulos), utilizando-se a ferramenta computacional ArcGIS, através de uma análise multicritério associada ao SIG – Sistemas de Informações Geográficas (Anexo IV - ANÁLISE MULTICRITÉRIO APLICADA AO ESTUDO DO RISCO DE INVASÃO DE PEIXES NÃO NATIVOS UTILIZADOS NA AQUICULTURA). Foi realizado o monitoramento das capturas das espécies não nativas pelos pescadores artesanais da região, e amostragens experimentais de juvenis através de coletas em regiões de zona rasa (Anexo V - SITUAÇÃO ATUAL DA INVASÃO DE PEIXES NÃO NATIVOS NA LAGOA DOS PATOS, RS, BRASIL). Este trabalho permite concluir que as principais espécies utilizadas na aquicultura da região (carpa comum, carpa capim, carpa prateada, carpa cabeçuda e a tilápia do Nilo) apesar de apresentarem elevado potencial invasor, somente a carpa comum e a tilápia do Nilo apresentam um risco de invasão iminente. Além disso, mesmo que estas espécies estejam presentes no ambiente natural sob a forma adulta, algumas com indícios reprodutivos (Anexo VI – EVIDENCIAS DE ATIVIDADE REPRODUTIVA DA INVASORA CARPA COMUM CYPINUS CARPIO (TELEOSTEI: CYPRINIDAE) EM UM SISTEMA COSTEIRO NO SUDESTE DO BRASIL), aparentemente elas não estão estabelecidas, pois não são encontrados juvenis.

Palavras – chave: Aquicultura, Espécies Invasoras, Lagoa dos Patos, Avaliação de Risco
ABSTRACT

Fish are the most commonly introduced group of aquatic animals worldwide, primarily due to aquaculture. In Brazil, more than half of aquaculture production is based on nonnative species. When a species is introduced in the ecosystem, there is a risk of it escaping into the natural environment, resulting in possible detrimental effects to native biota or even the functioning of the ecosystem. This work was performed to assist public managers decisions about which species would be ecologically suitable for use in aquaculture in the coastal region of the RS. We develop in this thesis five papers aiming to create a methodology for assessing the risk of invasion, based on the invasive potential of cultivated species (Annex I - POTENTIAL INVASIVE NON-NATIVE FISH FARmed IN THE COASTAL REGION OF RIO GRANDE DO SUL, BRAZIL), the ecological niche models, which indicate areas environmentally favorable to the establishment of the species (Annex II – ECOLOGICAL NICHE MODELS OF INVASIVE ALIEN FISH SPECIES USED IN AQUACULTURE IN BRAZIL), and the species potential about the capacity of introduction, establishment and impacts (Annex III - RISK ANALYSIS OF INVASIVE FISH OF PATOS LAGOON (RS)). This information was combined together with the pressure of introductions which area is exposed (propagule pressure) using the software ArcGIS, through a multi-criteria analysis associated with GIS – Geographic Information Systems (Annex IV - MULTICRITERIA ANALYSIS APPLIED TO STUDY THE INVASION RISK OF NOT NATIVE FISH USED IN AQUACULTURE). Was monitored the catches of nonnative species by fishermen in the region, and experimental samples of juveniles through collections in regions of shallow zone (Annex V - PRESENT SITUATION OF INVASION OF NON NATIVE FISH IN THE PATOS LAGOON, RS, BRAZIL). This work shows that the main species used in aquaculture in the region (common carp, grass carp, silver carp, bighead carp and Nile tilapia) despite having high invasive potential, only common carp and Nile tilapia have risk of invasion imminent. Moreover, even if these species are present in the natural environment as an adult, with some indications reproductive (Annex VI - EVIDENCE OF REPRODUCTIVE ACTIVITY OF THE INVASIVE COMMON CARP CYPRinus CARPIO (TELEOSTEI: CYPRINIDAE) IN A SUBTROPICAL COASTAL SYSTEM IN SOUTHERN BRAZIL) apparently they are not established, because juveniles are not found.

Keywords: Aquaculture, Invasive Species, Patos Lagoon, Risk Assessment
INTRODUÇÃO GERAL

O crescimento acelerado da população mundial tem gerado maior demanda por proteína de peixes, que já não pode ser satisfeita somente pelas capturas pesqueiras. A indústria da pesca mundial vem enfrentando vários desafios para poder cumprir seu papel de fornecedor de alimentos e, ao mesmo tempo, assegurar a viabilidade dos recursos que explora, portanto, qualquer aumento da produção não virá da pesca extrativa e sim da aquicultura (Castello 2007). Este fato já pode ser observado através da estatística pesqueira mundial, nas últimas duas décadas a pesca extrativista mantém a produção praticamente estagnada (de 85 para 95 milhões de toneladas), enquanto que a aquicultura cresceu mais de 500% no período, de cerca de 16 milhões de toneladas em 1990 para ~83 milhões atualmente (FAO 2012).

Os termos espécie introduzida, espécie exótica, espécie não nativa, espécie não indígena e espécie alóctone possuem o mesmo significado biológico, isto é, correspondem a “uma espécie, subespécie ou taxon menor, introduzido fora de sua distribuição atual ou passada; incluindo qualquer parte, gameta, sementes, ovos ou propágulos que seja capaz de sobreviver e subsequentemente reproduzir” (CDB 2002).

Uma espécie pode ser transferida de um continente, país ou região ou, em casos de espécies aquáticas, de uma bacia hidrográfica para outra (Vitule 2009). Outros conceitos importantes são: espécie estabelecida, que é aquela espécie não nativa que tem uma população autossustentável no novo ambiente natural, ou seja, as espécies estão se reproduzindo e não apresentam risco de extinção local imediata (Andersen et al. 2004). Espécie invasora, é uma espécie que se estabeleceu, está dispersando para além do local onde foi introduzida, tornou-se abundante, e está produzindo impactos, seja sobre o ambiente ou outras espécies (Kolar & Lodge 2001).

Teoricamente, não há possibilidade de uma espécie se integrar a uma nova comunidade sem que promova modificações sobre seus elementos originais, porém a gradação deste impacto é variável (Agostinho et al. 2007). Espécies invasoras podem causar mudanças irreversíveis nas comunidades ecológicas com alterações em todos os níveis de organização biológica, podendo afetar outras espécies desde o nível genético até ao ecossistema como um todo (Cucherousset & Olden 2011). O conjunto destes efeitos determina que a introdução de espécies não nativas, ou invasão biológica, seja reconhecida como uma das maiores ameaças à biodiversidade global e à sustentabilidade ecológica (Vitousek et al. 1996, Sala et al. 2000, Kolar & Lodge 2001, Casal 2006). Alguns exemplos podem ilustrar esses efeitos, a presença da tilapia está associada a reduções de organismos zooplantônicos e consequentemente a aumento na
biomassa fitoplantônica e uma redução na transparência da água (Attayde et al. 2007), outro efeito relacionado à esta espécie, é a alteração nos regimes de nutrientes, onde um aumento expressivo na biomassa de tilápias gerou um aumento na disponibilidade de nitrogênio e fósforo através da excreção, promovendo o crescimento de algas e contribuindo para a eutrofização (Cucherousset & Olden 2011). A presença da carpa comum também está relacionada a uma série de efeitos negativos, seja no ambiente, como a redução na transparência da água, devido ao hábito de revolver o fundo a procura de alimento, seja por efeitos diretos sobre a vegetação, através de desenraizamento ou efeitos indiretos, como alterações na composição de comunidades de invertebrados (Koehn 2004).

Uma vez que o controle ou erradicação de uma espécie estabelecida é frequentemente difícil, caro e as possibilidades de erradicação são limitadas, a métodos alternativos devem ser utilizados para evitar ou indicar as possibilidades de invasão. As avaliações de risco tentam caracterizar a probabilidade e a severidade dos possíveis efeitos adversos resultantes da presença das espécies invasoras (Andersen et al. 2004) de maneira que se possa direcionar os esforços de gerenciamento para as espécies mais problemáticas.

Algumas avaliações de risco se baseiam em traços reconhecidamente apresentados por espécies invasoras, tais como: dieta ampla, reprodução rápida, maturidade precoce, alta fecundidade, alta capacidade de dispersão, ampla tolerância fisiológica e rápido crescimento (Kolar & Lodge 2002, Kolar 2004, Kolar et al. 2005,). Outras consideram, além das características biológicas e ecológicas das espécies, outros fatores, como o histórico de sucesso de invasão e a pressão de propágulos no ambiente invadido, que é o número de indivíduos versus número de eventos de introdução (Lockwood et al. 2005). Também são considerados, a similaridade ambiental, o histórico de impactos, entre outros (Ricciardi & Rasmussen 1998, Bomford & Glover

Uma ferramenta poderosa é o Sistema de Informações Geográficas (SIG), no qual todas as informações podem ser espacializadas e georrefenciadas. Essa ferramenta é também utilizada para determinar as zonas ideais de implementação de projetos de aquicultura (Nath et al 2000, Radiarta et al. 2008, Freitas et al. 2009), em um raciocínio inverso pode ser usada nas análises de risco de invasões, a fim de indicar as zonas com maior risco de invasão. Este é o principal objetivo deste trabalho: criar um modelo de avaliação de risco de invasão das principais espécies não nativas utilizadas na aquicultura por meio do uso do SIG, permitindo identificar regiões com maior risco de invasão por estas espécies.

HIPÓTESE E ESTRUTURA DO TRABALHO

A presença de cultivos de peixes exóticos no entorno da Lagoa dos Patos, o histórico invasor das espécies cultivadas, o incentivo governamental de ampliar esta atividade, associados ao histórico de inundações locais, ocorridas devido aos intensos eventos chuvosos na região, intensificados pelas mudanças climáticas globais, fundamentam a hipótese de que o aumento da pressão de propágulos deve gerar um processo invasivo de peixes exóticos na Lagoa dos Patos. Esta hipótese serviu de base para a formulação da avaliação de risco de invasão desenvolvida neste trabalho.

O modelo de avaliação de risco foi aplicado para as principais espécies de peixes não nativas utilizadas na aquicultura e foi baseado no potencial invasor das espécies (Anexo I), na semelhança ambiental entre a região de origem e a região de introdução (Anexo II), e na probabilidade destas espécies de estabelecerem-se e causarem impactos.
(Anexo III). Todos os fatores foram sobrepostos geograficamente a fim de identificar risco de invasão na região (Anexo IV).

OBJETIVOS

Objetivo Geral

Visando suprir a carência de conhecimento da situação atual de invasões biológicas na Lagoa dos Patos, e na tentativa de reduzir o risco de futuras invasões por peixes não nativos, este trabalho tem como objetivo geral: Desenvolver um modelo de avaliação de risco de invasão para os peixes não nativos na planície costeira do Rio Grande do Sul, oriundos de cultivos aquáticos.

Objetivos Específicos

1. Determinar o potencial invasor das espécies utilizadas na piscicultura na região costeira do Rio Grande do Sul (Anexo I);

2. Construir modelos de distribuição potencial dos principais peixes não nativos utilizadas na aquicultura brasileira (Anexo II);

3. Classificar as principais espécies de peixes não nativos cultivados na região de entorno da Lagoa dos Patos quanto ao risco de introdução, estabelecimento e impactos no ambiente da Lagoa dos Patos (Anexo III);

4. Determinar as áreas mais sensíveis às invasões (Anexo IV);

5. Determinar o nível de invasão de peixes exóticos no sistema lagunar (Anexo V e VI);
METODOLOGIA GERAL

Área de estudo

A Lagoa dos Patos apresenta uma extensão de 250 km e uma largura máxima de 60 km, cobrindo uma área de 10.360 km² (Castello 1985). A laguna recebe o aporte de água doce dos rios da parte norte do Rio Grande do Sul e dos afluentes da Lagoa Mirim, assim representa um escoadouro natural da bacia hidrográfica (~200.000 km²) para o oceano Atlântico (Möller & Fernandes 2010). O Rio Guaíba é o maior tributário do sistema Patos-Mirim e junto com o Rio Camaquã e o Canal de São Gonçalo, contribuem com cerca de 85% da água da bacia de drenagem (Fig. 1). As atividades exercidas ao longo destas bacias têm grande influência sobre as condições ambientais deste sistema.

Figura 1. Localização da área de estudos e destaque para o Sistema Patos-Mirim

Análise de Risco

O desenvolvimento da avaliação de risco seguiu as recomendações propostas por “Aquatic Nuisance Species Task Force” na revisão dos processos de análise de risco para organismos aquáticos não nativos em geral (Risk Assessment and Management Committee 1996). Foram feitas adaptações a esta estrutura direcionando a análise aos processos de invasão relacionados aos escapes oriundos da piscicultura (Fig. 2).
Figura 2. Estrutura básica da avaliação de risco para espécies invasoras.

Etapa 1: Criação de uma lista com as espécies não nativas que serão analisadas. Para isto foram realizados levantamentos das espécies presentes nos cultivos da região através de pesquisa bibliográfica e contato com órgãos de extensão agropecuária, como Emater e Fepagro, produtores de alevinos e empresas de comércio agropecuário e determinado o potencial invasor destas espécies baseado na metodologia apresentada por Copp et al. (2005). O potencial invasor da espécie é uma categorização da capacidade de invasão da espécie em determinado local (Copp et al. 2005, 2009).

Etapa 2: Avaliação da via de introdução das espécies. Determina a pressão de propágulos a que o ambiente está exposto. Pressão de propágulo é o número de indivíduos da espécie introduzidos e a frequência de introduções que o ambiente está sofrendo. Para tal foi utilizado o número de cultivos e o número de açudes presentes nos municípios, os eventos de inundação ocorridos e área de rios em cada município.

Etapa 3: Avaliação de risco de invasão da espécie exótica. O modelo de avaliação de risco é dividido em dois componentes: a “probabilidade de estabelecimento” e as
“consequências do estabelecimento”. O primeiro componente está relacionado ao potencial invasor e a similaridade ambiental para a espécie. A similaridade ambiental está relacionada ao percentual de semelhança ambiental entre a área de distribuição conhecida e o local de destino do organismo (Peterson 2003). Já o segundo componente está relacionado aos possíveis impactos ambientais, econômicos e sociais resultantes da presença da espécie. Este componente foi baseado no histórico de impactos da espécie nas áreas onde já houve invasão conhecida, na presença de setores vulneráveis e na probabilidade de impacto. Também foi considerada a capacidade de dispersão da espécie na nova área, pois este fator afeta a magnitude dos impactos (Copp et al. 2005).

Etapas 4: Caracterização do Risco e Recomendações. O risco de invasão de uma espécie é caracterizado pela somatória da avaliação de risco do organismo (Etapas 3) e da avaliação de risco da via de introdução (Etapa 2). Este processo foi desenvolvido com a utilização de um Sistema de Informações Geográficas (SIG), no qual todas as informações foram espacializadas e georreferenciadas gerando mapas de risco.

SINTESE DOS RESULTADOS

Foram identificadas 14 espécies nos cultivos da região do entorno da Lagoa dos Patos. Apenas a piava *Leporinus obtusidens*, o dourado *Salminus brasiliensis*, a tainha *Mugil liza* e o jundiá *Rhandia quelen* são nativas da bacia hidrográfica da Lagoa dos Patos. Já o surubim *Pseudoplatystoma fasciatum*, o pintado *P. corruscans*, o pacu *Piaractus mesopotamicus* e o traírão *Hoplias lacerdae* são nativas de outras bacias hidrográficas brasileiras, e a carpa capim *Ctenopharyngodon idella*, a carpa comum *Cyprinus carpio*, a carpa prateada *Hypophthalmichthys molitrix*, a carpa cabeçuda *H. nobilis*, o bagre de canal *Ictalurus punctatus* e a tilápia do Nilo *Oreochromis niloticus*
são oriundas de outros países ou continentes. Somente estas últimas apresentaram elevado potencial invasor para a região (Anexo I) e seguiram para a análise de risco de invasão.

Os modelos de similaridade ambiental desenvolvidos para as espécies com elevado potencial invasor (Anexo II) indicaram que quase todo o território brasileiro é ambientalmente favorável ao estabelecimento da tilapia do Nilo (*O. niloticus*). Já para a carpa comum (*C. carpio*) a distribuição prevista é mais limitada, com áreas favoráveis na região Sul e Sudeste do Brasil. Para as carpas capim (*C. idella*), prateada (*H. molitrix*) e cabeçuda (*H. nobilis*) a área favorável é mais ampla que para a carpa comum, atingindo também uma porção da região Nordeste do país. As áreas indicadas pelos modelos como apresentando maior similaridade ambiental coincidiram com as áreas onde as espécies são produzidas pela aquicultura, o que corrobora a adequação dos modelos, já que existe uma clara correlação entre os locais de produção e as áreas mais favoráveis à espécie.

A avaliação de risco aplicada às principais espécies de peixes não nativos cultivados na região de entorno da Lagoa dos Patos (Anexo III) classificou-as quanto ao risco de introdução, estabelecimento e impactos. Os resultados sugerem que as espécies (carpas capim, prateada e cabeçuda) poderiam ser utilizadas na aquicultura da região da Lagoa dos Patos, pois apesar de apresentarem impactos potenciais as chances de estabelecimento no corpo lagunar são moderadas. Já a carpa comum e a tilápia do Nilo, além de apresentarem alto risco de estabelecimento, as probabilidades de causarem impactos também são elevadas, portanto, são consideradas espécies com elevado risco de se tornarem invasoras e, apesar do argumento de que a produção destas espécies
apresenta benefícios econômicos, principalmente na subsistência de pequenos produtores rurais, estas espécies deveriam ter seu uso evitado nos projetos de aquicultura do entorno da Lagoa dos Patos.

A avaliação multicritério associada ao uso da ferramenta SIG permitiu a criação de mapas de sensibilidade de risco (Anexo IV), de maneira que se pode ter uma visão das áreas de risco de invasão para esta região, ou seja, os níveis de risco são específicos para esta área, e são definidos comparativamente entre os municípios avaliados. O risco de invasão efetiva (atual) foi reduzido para a maioria das espécies e locais, com exceções para a tilápia do Nilo, carpa comum e carpa capim, nos municípios de São Lourenço do Sul e Pelotas. Já o risco potencial (com a capacidade máxima produtiva) indicou que em São Lourenço do Sul, Pelotas e Viamão todas as espécies avaliadas apresentam alto risco de invasão. Estes resultados estão relacionados principalmente a pressão de propágulos, mais especificamente ao numero de cultivos ou açudes em cada município.

O monitoramento da ocorrência de peixes não nativos (Anexo V) indicou uma presença reduzida de tais espécies no corpo lagunar. Apenas 13 exemplares de 4 espécies: *Cyprinus carpio* (N=8), *Cyprinus carpio carpio*(N=1), *Ctenopharyngodon idella* (N=2), *Oreochromis niloticus* (N=1) e *Tilapia rendalli* (N=1) foram capturados pelos pescadores artesanais que estavam fazendo parte deste programa de monitoramento. Não foram capturados indivíduos juvenis durante a execução deste trabalho. Estes resultados indicam que as principais espécies de peixes não nativos utilizadas na aquicultura da região do entorno da Lagoa dos Patos, apesar de estarem presentes no ambiente natural sob a forma de adultas, aparentemente não estão
estabelecidas na região, isto é, não estão se reproduzindo e mantendo populações autossustentáveis no ambiente lagunar, pois não são encontradas formas juvenis. Entretanto foram encontrados indícios de reprodução da carpa comum (Anexo VI) e novos estudos devem ser desenvolvidos nos rios conectados a Lagoa dos Patos para verificar o sucesso ou não do estabelecimento nestes ambientes.

CONSIDERAÇÕES FINAIS

A aquicultura está recebendo incentivos governamentais (MPA 2012) e é uma atividade em plena expansão em todo o Brasil, e a região sul não é uma exceção. As espécies utilizadas na atividade são em sua maioria originadas de outras regiões, como as carpas e tilápias, e a introdução de tais espécies pode representar um risco ao ambiente. A Lagoa dos Patos é um dos maiores corpos de água doce do Brasil e do mundo e sua importância ecológica é indiscutível. Os riscos dos efeitos das atividades antrópicas desenvolvidas nesta região precisam ser avaliados preferencialmente antes que estes efeitos sejam irremediáveis.

Apesar de as principais espécies utilizadas na aquicultura da região (carpa comum, carpa capim, carpa prateada, carpa cabeçuda e a tilápia do Nilo) apresentarem elevado potencial invasor, a carpa comum e a tilápia do Nilo são as mais preocupantes, pois apresentam um risco de invasão iminente, entretanto isto parece não preocupar ou é ignorado pelos responsáveis pela gestão da atividade como as secretarias de desenvolvimento rural e órgão de extensão como a EMATER/RS, que atende e orienta a maioria dos produtores envolvidos com a atividade no estado. O principal método de produção indicado por esta entidade é o policultivo de carpas (Cotrim 1995), com a justificativa que são as espécies mais resistentes às condições climáticas da região (Fiori
2013). Essa característica é um dos fatores que torna o cultivo da carpa comum preocupante, já que a região é ambientalmente favorável ao cultivo, mas também é ao estabelecimento, esta mesma situação ocorre em relação à tilapia do Nilo.

O uso indiscriminado de espécies com elevado risco de invasão e consequentes efeitos negativos ao meio ambiente indicam que a questão ambiental está sendo negligenciada em função da questão econômica. Portanto, uma abordagem mais sustentável deveria ser utilizada por esta e outras instituições, como o incentivo a produção de espécies nativas.

LITERATURA CITADA

ANEXO I

POTENCIAL INVASOR DOS PEIXES NÃO NATIVOS
CULTIVADOS NA REGIÃO COSTEIRA DO RIO GRANDE DO SUL, BRASIL

Troca, Débora F A; Vieira, João P.
POTENCIAL INVASOR DOS PEIXES NÃO NATIVOS CULTIVADOS NA REGIÃO COSTEIRA DO RIO GRANDE DO SUL, BRASIL*

Troca, Débora F A¹,² e Vieira, João P²

Artigo Científico: Recebido em 27/10/2011 – Aprovado em 20/04/2012

¹ Autor correspondente: e-mail: dfatroca@yahoo.com.br

*Apoio financeiro: CAPES (bolsa de doutorado concedida a primeira autora), FAPERGS (Processo 0905301/PROCOREDES VI) e CNPq (Processos 476020/2009-3 e 561425/2010-8)
RESUMO

No Brasil, o cultivo de peixes de água doce é baseado em poucas espécies, a maioria introduzida de outros países ou continentes. Quando uma espécie é introduzida no ecossistema, existe o risco dela escapar para o ambiente natural, resultando em possíveis efeitos prejudiciais a biota nativa ou até mesmo ao funcionamento do ecossistema. A fim de fundamentar as decisões dos gestores públicos sobre quais espécies seriam adequadas ao uso na aquicultura na região costeira do RS, este estudo classificou o potencial invasor das espécies não nativas de peixes cultivadas na região. A lista de espécies presentes nos cultivos foi obtida por meio de pesquisa bibliográfica e consulta a órgãos de extensão agropecuária ou instituições que prestam assistência técnica ou que servem de intermediários na aquisição de alevinos. O protocolo Fish Invasiveness Screening Kit – FISK foi aplicado para classificar as espécies não nativas de acordo com o seu potencial invasor. Dez espécies não nativas são cultivadas na região. *Ctenopharyngodon idella*, *Cyprinus carpio*, *Hypophthalmichthys molitrix*, *H. nobilis*, *Ictalurus punctatus* e *Oreochromis niloticus* apresentaram alto potencial invasor (pontuação entre 22 e 38), enquanto que *Pseudoplatystoma fasciatum*, *P. corruscans*, *Piaractus mesopotamicus* e *Hoplias lacerdae* apresentaram médio potencial invasor (pontuação entre 9 e 15). As espécies com alto potencial invasor devem compor uma lista “negra” e terem seu uso proibido. Para as espécies com médio potencial invasor devem ser aplicados estudos complementares para determinar a proibição ou não de seu uso na aquicultura da região da Lagoa dos Patos.

Palavras chave: Aquicultura; avaliação de risco; FISK; invasões biológicas; Lagoa dos Patos
ABSTRACT

Freshwater fish aquaculture in Brazil is based in a few species, mostly introduced from other countries or continents. When an exotic species is introduced into the ecosystem there a risk that this specie will escape in a natural systems, resulting in a possible detrimental effects to native species or even to the ecosystem functioning. In order to provide the public managers decisions about which species should be ecologically suitable for use in aquaculture in the coastal region of the Rio Grande do Sul State, this study classifies the invasive potential of several fish species used in inland aquaculture in the region. The list of species cultivated in the region was obtained by a literature review and consultation of agricultural extension agencies or institutions that provides technical assistance and serves as intermediaries in the purchase of fingerlings. The protocol Fish Invasiveness Screening Kit - FISK was applied to classify non-native species according to invasive potential. Ten non-native species are cultivated in the region. Ctenopharyngodon idella, Cyprinus carpio, Hypophthalmichthys molitrix, H. nobilis, Ictalurus punctatus and Oreochromis niloticus presented a high invasive potential, scoring between 22 and 38, while Pseudoplatystoma fasciatum, P. corruscans, Piaractus mesopotamicus and Hoplias lacerdae presented medium invasive potential, scoring between 9 and 15. The species with high potential should compose a "black" list and have to be prohibited its use. For the species with medium invasive potential further studies should be applied in order to determine the danger or not of its use in aquaculture in the region of Patos Lagoon.

Keywords: Aquaculture; Biological invasions; FISK; Patos Lagoon; Risk evaluation
INTRODUÇÃO

O número de espécies transferidas do seu local de origem, ao redor do mundo, mais do que duplicou nas últimas três décadas, tornando as invasões biológicas um problema ambiental de grande interesse público (GOZLAN, 2008). Os termos espécie introduzida, espécie exótica, espécie alienígena, espécie não nativa, espécie não indígena e espécie alóctone possuem o mesmo significado biológico e segundo a European Inland Fisheries Advisory Commission (EIFAC), e correspondem a toda e qualquer espécie transportada e solta pelo homem, fora de sua área de distribuição natural, intencional ou acidentalmente (VITULE, 2009). Ainda, a Convenção sobre Diversidade Biológica (CDB) define espécie exótica como “toda espécie, subespécie ou menor táxon, introduzida fora de sua área de distribuição natural, presente ou passada, incluindo qualquer parte, gameta, sementes, ovos, ou propágulos da espécie que possa sobreviver e, subsequentemente, se reproduzir”.

Outro conceito importante e distinto dos acima mencionados é o de espécie invasora. A International Union for Conservation of Nature (IUCN), por exemplo, define espécie invasora como qualquer organismo introduzido pelo homem em locais fora de sua área de distribuição natural que se estabeleceu e dispersou, causando um impacto negativo sobre outras espécies ou no ecossistema (ISSG, 2011).

Quando uma nova espécie é introduzida em um ecossistema, sempre existe o risco de ela ser capaz de escapar e se estabelecer no ambiente natural, resultando em possíveis efeitos prejudiciais às espécies nativas ou até mesmo ao funcionamento do ecossistema (GOZLAN et al., 2010). Os efeitos resultantes das introduções podem ser devastadores, fazendo com que as invasões biológicas sejam consideradas uma das
principais causas de perda de biodiversidade (VITOUSEK et al., 1996; DEXTRASE e MANDRAK, 2006; AGOSTINHO et al., 2007; VITULE et al., 2009; MCGEOCH et al., 2010).

A aquicultura é a maior responsável pela introdução de novas espécies no ambiente aquático (WELCOMME, 1988; NAYLOR et al., 2001; GOZLAN, 2008) e vem sendo usada como um exemplo para ilustrar o crescimento da crise de introdução e estabelecimento de espécies não nativas (CASAL, 2006). Os peixes estão entre o grupo de animais aquáticos mais introduzidos em todo o mundo (624 espécies), sendo que 91% das fontes de introduções estão relacionadas a peixes cultivados (GOZLAN, 2008). No Brasil, a piscicultura também é a principal atividade responsável pela introdução e dispersão de peixes nos ecossistemas aquáticos (ORSI e AGOSTINHO, 1999; AGOSTINHO et al., 2007; VITULE et al., 2009).

No Brasil, as primeiras introduções de peixes são bastante antigas, datando do final do século XIX, e vários são os exemplos de peixes oriundos de outros continentes que já estão incorporados em algumas bacias do país (VITULE, 2009). Além disto, toda a base da piscicultura brasileira é fundamentada em poucas espécies oriundas de outros países ou continentes (IBAMA, 2007; VITULE, 2009; MPA, 2012). Com o aumento da demanda por proteína de peixes, que já não pode ser satisfeita somente pelas capturas pesqueiras (CASTELLO, 2007), e os incentivos financeiros que o setor da aquicultura está recebendo (MPA, 2008), é provável que o número de introduções venha a aumentar. Para ilustrar, podemos citar a iniciativa do deputado Nelson Meurer (PP-PR) que incentiva a criação de espécies não nativas em tanques-rede, equiparando-as às espécies nativas do local (Projeto de Lei Nº 5.989-B/2009; LIMA JUNIOR et al. 2012).
Apesar da comissão de Meio Ambiente, que analisou o projeto, ter se posicionado totalmente contrária ao uso de espécies não nativas, a proposta foi aprovada, tendo apenas sido retirada a nominação das espécies e deixado a cargo do Ministério da Pesca e Aquicultura a determinação de quais espécies se enquadrariam nessa liberação. LIMA JUNIOR et al. (2012) chamam a atenção para a falta de preocupação do governo brasileiro com os riscos ambientais, em detrimento de uma produção econômica ao aprovar esta proposta.

No Rio Grande do Sul, a base da aquicultura são as carpas (várias espécies que recebem esta denominação foram agrupadas na estatística do IBAMA), que em 2007 representaram 90% (21.401 toneladas) do total produzido no estado (IBAMA, 2007). Em 2009, segundo as estatísticas oficiais, o estado tornou-se o maior produtor de peixes cultivados do Brasil, contribuindo com 14% da produção nacional (MPA, 2012). A visível preferência por espécies não nativas no Estado pode estar colocando em risco os ecossistemas adjacentes aos sistemas de cultivo.

Na Lagoa dos Patos, algumas espécies exóticas já foram detectadas, tanto na porção límnnica, como estuarina (GARCIA et al., 2004; BECKER et al., 2007; MILANI e FONTOURA, 2007). Na bacia do Rio dos Sinos, a qual também está conectada com a Lagoa dos Patos, foram registradas 12 espécies não nativas, sendo que cinco destas foram introduzidas por escapes de pisciculturas (LEAL et al., 2009).

Apesar das taxas de estabelecimento das espécies introduzidas serem relativamente baixas, com apenas 10% das introduções resultando em estabelecimento e destes, apenas 10% tornando-se invasores e resultando em efeitos ecológicos adversos (WILLIAMSON e FITTER, 1996), estes efeitos deveriam ser foco das autoridades.
reguladoras, das quais se espera o gerenciamento da invasão. Uma gestão eficaz exige ações compatíveis com o nível de risco gerado pela presença da espécie no ambiente (BRITTON et al., 2010). As análises de risco para peixes não nativos geralmente visam prever o potencial invasor de uma ou mais espécies e, em seguida, avaliar a probabilidade da espécie estabelecer populações auto-sustentáveis, dispersar-se e causar possíveis efeitos adversos (COPP et al., 2005).

Uma maneira de priorizar as espécies a serem analisadas é a criação de listas “negras” e “brancas” que podem ser utilizadas para classificar as espécies de acordo com a percepção de causar maior ou menor dano ecológico (BRITTON et al., 2011). O Fish Invasiveness Screening Kit (FISK) (COPP et al., 2005) é uma das ferramentas de pré-seleção de riscos que permite categorizar as espécies não nativas quanto ao seu potencial invasor e auxiliar na criação de tais listas. É uma ferramenta relativamente simples, baseada em informações sobre a biogeografia, o histórico invasor e as características biológicas e ecológicas da espécie analisada.

A fim de fundamentar as decisões dos gestores ambientais da região do entorno da Lagoa dos Patos sobre quais espécies não nativas seriam adequadas para o uso na aquicultura, principalmente aquelas que não representem um risco substancial ao ambiente, objetivou-se identificar o potencial invasor das espécies utilizadas na aquicultura continental da região. Para atingir este objetivo, foi feito um levantamento das espécies não nativas presentes nos cultivos da área de estudo e, em seguida, as espécies foram classificadas de acordo com o seu potencial invasor com base nos escores produzidos pelo FISK (COPP et al., 2005, 2009).

MATERIAL E MÉTODOS
Localizada na região sul do Brasil, a Lagoa dos Patos representa um dos maiores corpos de água doce do Brasil. Esse ecossistema possui uma grande variedade de habitats naturais (campos alagados, banhados, lagos, rios, estuário) que propiciam condições ideais para o desenvolvimento e suporte de uma elevada biodiversidade (SEELIGER e KJERFVE, 2001). A Lagoa é classificada como a maior laguna do tipo estrangulado do mundo, cobre uma área de aproximadamente 10.227 km² e recebe a água de uma bacia de drenagem de 201.626 Km² (Figura 1). A temperatura superficial da água varia entre 9 e 30°C (ZANOTTA et al., 2010). A porção estuarina cobre cerca de 1.000 km², e se caracteriza por uma troca permanente de água com o Oceano Atlântico, através de um longo canal protegido por um par de molhes (ASMUS, 1998). A salinidade na porção estuarina varia entre 0 e 30 e está intimamente relacionada a descarga fluvial e ação dos ventos (GARCIA, 1998).
Figura 1. Área de estudo com localização da Lagoa dos Patos na região costeira do sul do Brasil.

A lista de espécies presentes nos cultivos do entorno da Lagoa dos Patos foi obtida por meio de pesquisa bibliográfica (MARDINI et al., 1997; POLI et al., 2000; PIEDRAS e BAGER, 2007; BALDISSEROTTO, 2009; LEAL et al., 2009; TROCA, 2009) e consulta a órgãos de extensão agropecuária ou instituições que prestam assistência técnica ou servem de intermediários na aquisição de alevinos (EMATER/ASCAR, Secretaria de Desenvolvimento Rural da Prefeitura Municipal de Pelotas, a Universidade Federal do Rio Grande). Além destes, foram consultados
fornecedores de alevinos e os próprios produtores. Foram feitas visitas a cerca de 50 produtores para confirmação das informações obtidas.

Para categorizar as espécies de peixes não nativas cultivadas no entorno da Lagoa dos Patos, de acordo com a percepção de risco de causar maior ou menor dano ecológico, foi utilizada a ferramenta analítica *Fish Invasiveness Screening Kit - FISK* (COPP et al., 2005). A categorização das espécies permite a criação de listas “brancas” e “negras” de acordo com o potencial invasor. As espécies listadas como “brancas” tendem a ter sua introdução permitida, devido a sua gama de benefícios econômicos e sociais e mínimo risco ambiental (BRITTON *et al*., 2011).

A avaliação consiste em um sistema de pontuação composto por 49 questões divididas nos temas: A) Biogeografia e histórico invasor: inclui questões sobre a domesticação e/ou cultivo da espécie (Número de Questões - NQ = 3), distribuição e similaridade climática entre os locais de ocorrência da espécie e do ambiente analisado (NQ = 5) e o histórico invasor da espécie (NQ = 5); B) Biologia e ecologia da espécie: aborda questões sobre a guilda alimentar (NQ = 4), reprodução (NQ = 7), mecanismos de dispersão (NQ = 8), níveis de tolerância da espécie (NQ = 5) e considera os possíveis impactos resultantes da introdução (NQ = 12), incluindo competição, alteração de habitat, parasitismo, predação, introdução de pragas ou parasitas, hibridismo, alterações na qualidade do habitat e no funcionamento do ecossistema entre outros.

A avaliação utilizou a versão v1.19 calibrada do FISK, que é livre e disponível para download em: <http://www.cefas.co.uk/projects/risks-and-impacts-of-non-native-species/decision-support-tools.aspx>. Os limites dos escores para classificação das espécies de peixes com alto, médio ou baixo risco de invasão foram calibrados por
COPP et al. (2009), sendo que valores menores que 1 indicam baixo risco, valores entre 1 e 18,9 representam médio risco e valores maiores que 19 indicam alto risco. A pontuação total de FISK varia entre -11 e 54 (COPP et al., 2005). O nível de confiança foi incorporado à análise por COPP et al. (2009), e cada resposta recebe um escore de certeza, que varia de 4 (altamente certo) a 1 (muito incerto).

RESULTADOS

Foram identificadas 869 propriedades com cultivos de peixes na região, apresentando 14 espécies pertencentes a cinco ordens e oito famílias (Tabela 1). Destas, apenas Leporinus obtusidens; Salminus brasiliensis; Mugil liza; Rhandia quelen são nativas da bacia hidrográfica da Lagoa dos Patos; já Pseudoplatystoma fasciatum, P. corruscans, Piaractus mesopotamicus e Hoplias lacerda são nativas de outras bacias hidrográficas brasileiras, enquanto que Ctenopharyngodon idella, Cyprinus carpio, Hypophthalmichthys molitrix, H. nobilis, Ictalurus punctatus e Oreochromis niloticus são oriundas de outros países oucontinentes.
Baseado na origem foi avaliado o potencial invasor das espécies não nativas (*P. fasciatum, P. corruscans, P. mesopotamicus e H. lacerdae, C. idella, C. carpio, H. molitrix, H. nobilis, I. punctatus e O. niloticus*). O número de questões respondidas para cada uma das espécies avaliadas foi alto (%> 85,7) (Tabela 1). Os valores médios da certeza nas respostas dadas às questões também foram altos, variando de 3,9 a 4, para um máximo possível de 4.

A pontuação do FISK variou entre 9 e 38 (Figura 2) e a maior pontuação foi obtida pela tilapia *O. niloticus*, seguida pela carpa comum *C. carpio*. Outras quatro espécies receberam escores maiores que 19 e foram classificadas com alto potencial

Figura 2. Escores obtidos no FISK para as espécies analisadas. Barras pretas indicam alto potencial invasor e barras cinza médio potencial. A linha pontilhada indica o limite entre as classes de risco (Pontuação=19).

DISCUSSÃO

A produção de espécies nativas na aquicultura continental brasileira recebeu um incremento nos últimos anos, com um crescimento em 2009 em torno de 63% em relação a 2007, com destaque para o tambaqui Colossoma macropomum (30.598-46.454 t, Produção em 2007 e 2009), o pacu Piaractus mesopotamicus (12.397-18.171 t) e o híbrido entre estas espécies o tambacu (10.854-18.492 t). Estas espécies juntas representaram 24% da produção total da aquicultura continental em 2009 (MPA, 2012). Entretanto, as espécies mais cultivadas no Brasil são as tilápias (Oreochromis spp e Tilapia spp) e as espécies agrupadas sob a denominação de carpas (C. carpio, H. carpio, H. molitrix, H. nobilis, I. punctatus).
O bichinhos molitrix, H. nobilis, C. idella), que correspondem a 24% e 39%, respectivamente, da produção nacional (MPA, 2012).

Os registros disponíveis sobre ocorrência destas espécies não nativas no ambiente natural confirmam a correspondência direta entre a atividade de cultivo e a fuga para o ambiente adjacente (WELCOMME, 1988; NAYLOR et al., 2001; CASAL, 2006; AGOSTINHO et al., 2007; GOZLAN, 2008; VITULE et al., 2009). Por exemplo, na bacia do Rio Paraná, foi registrada a introdução de mais de um milhão de indivíduos de espécies não nativas, decorrente de um evento de cheia ocorrido na região, onde as tilápias representaram 24% destes indivíduos (ORSI e AGOSTINHO, 1999). LANGEANI et al. (2007) registraram a ocorrência de mais de 70 espécies introduzidas na bacia do Alto Rio Paraná. Já VITULE et al. (2012) registraram 85 espécies quando uma barreira natural foi eliminada, destas onze estariam associadas a escapes de cultivos. AGOSTINHO et al. (2007) demonstram que as tilápias estão presentes em diversos reservatórios brasileiros, principalmente na região sudeste do país. No estado de Minas Gerais, O. niloticus é considerada de grande importância nas capturas pesqueiras na bacia do rio Doce (ALVES et al., 2007). Estas espécies também foram registradas tanto para a região do semi-árido do país (ROSA et al., 2003) como nas regiões mais frias, como na bacia do rio dos Sinos, no Rio Grande do Sul (LEAL et al., 2009; COSTA and SHULZ, 2011).

As espécies com os maiores escores na análise (O. niloticus e C. Carpio) apresentam características biológicas e ecológicas, como alto grau de rusticidade, ampla tolerância a variações das condições ambientais, altas taxas de fecundidade, plasticidade alimentar, entre outros, que as tornam mais prováveis de obterem sucesso no processo
de invasão (AGOSTINHO et al., 2007). Apresentam hábitos que causam efeito negativo sobre a transparência da água devido a suas ações de bioperturbação e ressuspenção de sedimentos, além de outras características como, por exemplo, a alta capacidade competitiva por recursos e espaço que podem afetar negativamente outras espécies (CANONICO et al., 2005; ATTAYDE et al., 2007; VITULE, 2009).

Hypophthalmichthys molitrix, H. nobilis e C. idella apesar de classificados com alto risco de invasão, apresentaram escores um pouco mais baixo, principalmente devido às necessidades específicas para a reprodução destas espécies. Já _I. punctatus_ apresentou escores relativamente inferiores devido ao reduzido potencial dispersor da espécie nas fases iniciais, já que produzem ninhos e apresentam cuidado parental. Porém os vários impactos ecológicos associados a sua presença em um novo ambiente, principalmente relacionados a seu hábito predador, com forte tendência carnívora (BECKER e GROSSER, 2003), acabam elevando seu status como espécie potencialmente invasora.

As outras espécies avaliadas, _P. fasciatum, P. corruscans, P. mesopotamicus_ e _H. lacerdae_ foram classificadas com médio potencial invasor. Os fatores que mais influenciaram na classificação das espécies do gênero _Pseudoplatystoma_ estão relacionados à sua ampla tolerância a variações das condições ambientais, e a sua capacidade de dispersão, tanto de ovos, larvas como de adultos. A traíra _H. lacerdae_ é uma espécie predadora que pode resultar em efeitos negativos diretos sobre espécies nativas. Além disto, esta espécie pode apresentar maior probabilidade de sucesso de invasão devido à presença de uma espécie congênere nativa na região, _H. malabaricus_, com biologia e ecologia muito semelhante. Já o pacu _P. mesopotamicus_ é uma espécie
cultivada há mais tempo, a partir do início da década de 80 (KUBITZA et al., 2007), com algumas ocorrências de introdução (GBIF, 2012), que somadas às outras características como a capacidade de dispersão de ovos e larvas e a ampla tolerância a variações nas condições ambientais, também o classifica com médio risco de invasão. Entretanto, é importante salientar que apesar da origem dessas espécies ser em outras bacias hidrográficas brasileiras, isto não significa que são menos problemáticas que espécies vindas de outros países ou continentes (VITULE, 2009).

Várias das espécies não nativas cultivadas já foram encontradas no ambiente natural da Lagoa dos Patos, sendo *C. carpio, H. molitrix, H. nobilis e C. idella* registradas, tanto para o ambiente estuarino, como na porção norte da Lagoa (GARCIA et al., 2004; BECKER et al., 2007; MILANI e FONTOURA, 2007). Já foi encontrado um exemplar de *O. niloticus* na porção límnica da Lagoa dos Patos e também um exemplar de *C. idella* na Lagoa Mirim (TROCA, 2012; observação pessoal). Além destas, *O. niloticus, P. corruscans, P. mesopotamicus e H. lacerdae*, foram registradas na bacia do Rio dos Sinos, um dos principais afluentes da porção norte da Lagoa dos Patos (Rio Guaiaba), estando sua introdução associada a escapes de pisciculturas (LEAL et al., 2009).

Apesar de nenhuma das espécies detectadas na Lagoa dos Patos apresentarem registros de estabelecimento de populações auto-sustentáveis, *C. carpio, I. punctatus* e *O. niloticus*, reproduzem-se em cativeiro na região (PIEDRAS et al., 2006), o que comprova a adaptação, pelo menos quanto a temperatura, às condições climáticas da região, e a possibilidade destas espécies se tornarem invasoras. Além disto, já foram encontrados exemplares de fêmeas maduras de *C. carpio* no ambiente lagunar (TROCA,
2012; observação pessoal). Já *C. idella, H. molitrix, H. nobilis, P. fasciatum, P. corrucans e P. mesopotânicos* são peixes migradores que necessitam de condições ambientais muito específicas para reprodução (MIRANDA, 1997; CUDMORE and MANDRAK, 2004; KOLAR et al., 2005; KUBITZA et al., 2007), condições estas, como velocidade de vazão e transparência da água, não obtidas no ambiente lagunar. Porém, não se deve ignorar o fato de que estas espécies possam estar presentes, e se reproduzindo, na porção lótica dos rios conectados a Lagoa dos Patos.

A ausência de populações estabelecidas das espécies que possuem adaptação às condições hidrológicas da região, pode estar relacionada a baixa pressão de introduções na região da Lagoa dos Patos, já que a maioria dos cultivos está concentrada na região centro-norte do estado (MARDINI et al., 1997). Dos mais de 26.000 piscicultores identificados no Rio Grande do Sul (POLI et al., 2000), cerca de 2.000 estão localizados na região sul (PIEDRAS e BAGER, 2007) e menos da metade destes estão próximos a Lagoa dos Patos (TROCA, 2009).

Uma alternativa ao uso de espécies não nativas é a produção de espécies nativas que já apresentam a tecnologia desenvolvida para produção em cativeiro, como o jundiá, a traíra *Hoplias malabaricus*, as piavas, o dourado, o grumatã, os lambaris do
gênero Astyanax a piracanjuba Brycon orbignyanus e o peixe-rei Odontesthes bonariensis (BALDISSEROTTO, 2009). Porém, é necessária uma conscientização, principalmente dos responsáveis por programas de extensão rural voltados a piscicultura, dos riscos envolvendo a produção de espécies invasoras. Além disto, estímulos a produção das espécies nativas devem ser incentivados.

CONCLUSÕES

AGRADECIMENTOS

Os autores agradecem a todos os funcionários das entidades consultadas pelo fornecimento dos dados sobre os piscicultores. À Leonardo Moraes, pela revisão na análise do protocolo FISK e a Alexandre Miranda Garcia, pela revisão e sugestões para realização deste trabalho.

REFERÊNCIAS

AGOSTINHO, A.A.; GOMES, L.C.; PELICICE, F.M. 2007 Ecologia e manejo de recursos

CASAL, C.M.V. 2006 Global documentation of fish introductions: the growing crisis and recommendations for action. Biological Invasions, Dordrecht, 8: 3-

COPP, G.H.; VILIZZI, L.; MUMFORD, J.; FENWICK, G.V.; GODARD, M.J.; GOZLAN,

FIGUEREDO, C.C., and GIANI A.. 2005. Ecological interactions between Nile tilapia (Oreochromis niloticus) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biology, 50:1391–1403.

ANEXO II

ECOLOGICAL NICHE MODEL OF INVASIVE ALIEN FISH SPECIES USED IN AQUACULTURE IN BRAZIL

Troca, Débora F A; Vieira, João P.

(Artigo a ser submetido ao periódico Biological Invasions)
Ecological niche models of invasive alien fish species used in aquaculture in Brazil

Débora Fernanda Avila Troca1*, and João Paes Vieira1

1 Laboratório de Ictiologia, Instituto de Oceanografia, Programa de Pós-Graduação em Oceanografia Biológica – Universidade Federal do Rio Grande, Caixa postal 474, 96201-900, Rio Grande, RS, Brazil

E-mail: dfatroca@yahoo.com.br (DFAT), vieira@mikrus.com.br (JPV)

*Corresponding author
ABSTRACT

Fish are the most commonly introduced group of aquatic animals worldwide, primarily due to aquaculture. In Brazil, more than half of aquaculture production is based on nonnative species. Some of those species have a long history of introduction and impact in countries around the world. Identifying areas that are environmentally suitable for invasive species is particularly important because this information may be used to identify preventive measures to avoid invasions or reduce their rate of spread.

We used the Genetic Algorithm for Rule-set Prediction to model the ecological niche of the principal nonnative fish species used in Brazilian aquaculture: *Oreochromis niloticus*, *Cyprinus carpio*, *Ctenopharyngodon idella*, *Hypophthalmichthys molitrix*, and *Hypophthalmichthys nobilis*. We built three models: (1) a Native model, which utilized only records of the native range; (2) an Invasive model, which utilized records of the invasive range; and (3) a Combined model, which utilized both native and invasive records. We then projected the models on to the landscape of Brazil. The analyses of these model predictions suggest that the results of the Combined model were superior to those of the Invasive and Native models. Have been identified tilapia as the species with the largest favorable area throughout Brazil and discuss the broader implications of its potential introduction.

Keywords: Carp; Tilapia; Invasive species; Niche modeling; GARP
INTRODUCTION

Increased global trade and human mobility have resulted in the progressive homogenization of the Earth’s biota. Fish are the most commonly introduced group of aquatic animals (Gozlan 2008). Aquaculture is the primary reason for the introduction of nonnative freshwater fish (Gozlan 2008). Such introductions represent a response to the increasing demand for food (Casal 2006). Unfortunately, most introductions have been made purely for economic purposes and without proper concern for biological consequences (Pérez et al. 2003).

Brazil ranks fourteenth in the world in aquaculture production, with a yield of 479,399 tons in 2010 (FAO 2012). Although freshwater fish diversity is high in Brazil (Buckup et al. 2007), more than half (250,000 tons/year) of the aquaculture production in Brazil is based on nonnative species, particularly tilapia and carp (MPA 2012). Some of these species have a long history of introduction and impact in countries around the world (Koehn 2004; Lowe et al. 2004; Canonico et al. 2005; Arthur et al. 2010; Attayde et al. 2011; Kulhanek et al. 2011; Kulhanek et al. 2011b).

Identifying areas that are environmentally suitable for invasive species is particularly important because this information can be used to adopt preventive measures to avoid invasions or reduce their rate of spread. Ecological Niche Models (ENMs) have been used extensively to identify the potential areas of invasive fish (McNyset 2005; Zambrano et al. 2006; Chen et al. 2007; DeVaney et al. 2009). An ENM evaluates the relationships between species occurrence data and environmental data and estimates the similar areas for occurrence of invasive species and the areas where the risk of invasion is highest (Reshetnikov and Ficetola 2011). The correct use
of ENMs requires a clear understanding of the differences between existing fundamental niche and fundamental niche. The ENM is determined by physiological limitations of the species and refers to the places where a species could live (i.e., geographical areas with a suitable environment), whereas the existing fundamental niche, is determined jointly by environmental conditions, biotic factors, ecological interactions with other species, and dispersal limitations, such as geographic barriers, and refers to the places where a species actually lives and (Jiménez-Valverde et al. 2011, Peterson and Soberon 2012).

An ENM assumes that species demonstrate niche conservatism (Broennimann et al. 2007), i.e., that species persist over time in sites under the same abiotic conditions and retain aspects of their fundamental niche over time (Wiens and Graham 2005). If their fundamental niches are conserved, species will only be able to invade regions that have similar climatic conditions. Several researchers have used the native distribution of an invasive species to build ecological niche models (Peterson 2003; Guisan and Thuiller 2005; Wiens and Graham 2005; DeVaney et al. 2009), particularly because certain invasive species are not in equilibrium with their environment in the invaded range. From another perspective, Mau-Crimmins et al. (2006) have demonstrated that a forecast of the geographical distributions of an invading species based on sites occupied in the invaded range may perform more effectively than models developed from the native range and can potentially provide additional information, such as insight into the environmental conditions tolerated by the invader and inconsistencies in the niches between the native and invaded ranges. Therefore, the combined use of native and invasive ranges to predict the distribution of invasive species would be more informative for the prediction of biological invasions than the use of the native or
invasive range alone (Mau-crimmins et al. 2006; Broennimann et al. 2007; Broennimann and Guisan 2008).

The objectives of this study are as follows: (1) to build an ENM for nonnative fish species used in Brazilian aquaculture based on the distribution ranges of both native and invasive species in order to predict the range of invasions; (2) to test the accuracy of this ENM and compare it with the accuracy of ENMs based only on the native or invasive ranges; and (3) to project the ENM into the landscape of Brazil to assess the ecological niche of each species.

METHODS

Occurrence data

We constructed the ecological niche models of the principal nonnative fish species used in Brazilian aquaculture: Nile tilapia (*Oreochromis niloticus*), common carp (*Cyprinus carpio*), grass carp (*Ctenopharyngodon idella*), silver carp (*Hypophthalmichthys molitrix*), and bighead carp (*Hypophthalmichthys nobilis*). The species occurrence data were obtained from the scientific literature indexed in the database Web of Science and from on-line databases (Table 1). The search terms were the common and scientific names of each species. All data were georeferenced using Google Earth and geoLoc (http://splink.cria.org.br/geoloc?criaLANG=pt). We considered that an invasive species was present in a particular location only if the species was recorded in the literature as being established at that location. Due to the sampling intensity in one specific area of the native range of *C. carpio* in China, we subsampled the occurrence points in this area (23 from 234) using the Subset Features
We modeled the four carp species (*C. carpio*, *C. idella*, *H. molitrix*, and *H. nobilis*) individually, although Brazilian statistics present these carp as a single species group (MPA 2012).

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>References to the occurrence of the species</th>
<th>No. of occurrence points used in models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Native</td>
</tr>
<tr>
<td>Cyprinus carpio</td>
<td>Common carp</td>
<td>1; 7; 8; 10; 12; 18; 21; 23; 28; 31; 33; 39; 48; 52</td>
<td>287</td>
</tr>
<tr>
<td>Oreochromis niloticus</td>
<td>Nile tilapia</td>
<td>2; 3; 4; 5; 6; 9; 11; 13; 15; 16; 17; 19; 23; 24; 25; 26; 27; 30; 34; 35; 36; 38; 40; 41; 42; 43; 44; 45; 47; 50; 51; 53</td>
<td>42</td>
</tr>
<tr>
<td>Ctenopharyngodon idella</td>
<td>Grass carp</td>
<td>14; 22; 23; 46; 49</td>
<td>37</td>
</tr>
<tr>
<td>Hypophthalmichthys molitrix</td>
<td>Silver carp</td>
<td>20; 23; 29; 32; 37</td>
<td>115</td>
</tr>
<tr>
<td>Hypophthalmichthys nobilis</td>
<td>Bighead carp</td>
<td>20; 23; 32; 37</td>
<td>78</td>
</tr>
</tbody>
</table>

1 ArcMap™ is the intellectual property of Esri and is used herein under license. Copyright © Esri. All rights reserved. For more information about Esri® software, please visit www.esri.com
Environmental data

A total of 35 bioclimatic variables and one topographic variable were used in the analysis (Table 2). The bioclimatic variables were extracted through global land area interpolation with a 30-arc-second-resolution grid (often referred to as a “1 km²” resolution) and are available through the Climond website (Kriticos et al. 2012; https://www.climond.org/). The baseline climatology was gathered from the WorldClim and CRUCL1 0 and CL2 0 datasets. The topography was obtained from the U.S. Geological Survey’s Hydro-K dataset (http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro/) at the same spatial resolution.

We used a Pearson correlation to reduce the original set of bioclimatic predictors to those predictors that provided the highest predictive power and that were not strongly correlated with each other. We generated 10,000 random points with ArcMap 10.0 and used these points to calculate the Pearson correlation between environmental variables with R software, version 2.13.1 (R Development Core Team 2011). Variables showing a correlation > 0.80 (p < 0.001) were considered redundant (Giovanelli et al. 2010). The topography variable included was flow accumulation, which considers areas of hydrological accumulation. The variables included in the final coverage set are indicated above with an asterisk.
Table 2 Environmental data layers used in the development of the models presented herein.

<table>
<thead>
<tr>
<th>Environmental data layers</th>
<th>Precipitation in the coldest quarter*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual mean temperature*</td>
<td>Annual mean radiation</td>
</tr>
<tr>
<td>Mean diurnal temperature range*</td>
<td>Highest weekly radiation*</td>
</tr>
<tr>
<td>Isothermality</td>
<td>Lowest weekly radiation</td>
</tr>
<tr>
<td>Temperature seasonality</td>
<td>Radiation seasonality</td>
</tr>
<tr>
<td>Maximum temperature of the warmest week</td>
<td>Radiation in the warmest quarter</td>
</tr>
<tr>
<td>Minimum temperature of the coldest week</td>
<td>Radiation in the coldest quarter</td>
</tr>
<tr>
<td>Annual temperature range*</td>
<td>Radiation in the wettest quarter*</td>
</tr>
<tr>
<td>Mean temperature of the wettest quarter</td>
<td>Radiation in the driest quarter</td>
</tr>
<tr>
<td>Mean temperature of the driest quarter</td>
<td>Radiation in the coldest quarter</td>
</tr>
<tr>
<td>Mean temperature of the warmest quarter</td>
<td>Annual mean moisture index</td>
</tr>
<tr>
<td>Mean temperature of the coldest quarter</td>
<td>Highest weekly moisture index*</td>
</tr>
<tr>
<td>Annual precipitation*</td>
<td>Lowest weekly moisture index*</td>
</tr>
<tr>
<td>Precipitation in the wettest week</td>
<td>Moisture index seasonality*</td>
</tr>
<tr>
<td>Precipitation in the driest week*</td>
<td>Mean moisture index of the wettest quarter*</td>
</tr>
<tr>
<td>Precipitation seasonality*</td>
<td>Mean moisture index of the driest quarter*</td>
</tr>
<tr>
<td>Precipitation in the wettest quarter</td>
<td>Mean moisture index of the warmest quarter*</td>
</tr>
<tr>
<td>Precipitation in the driest quarter</td>
<td>Mean moisture index of the coldest quarter*</td>
</tr>
<tr>
<td>Precipitation in the warmest quarter</td>
<td>Flow accumulation*</td>
</tr>
</tbody>
</table>

Model building

Several techniques have been applied to predict the ecological niche models of exotic species (Jiménez-Valverde et al. 2011). These techniques use presence-only records (e.g., BIOCLIM and DOMAIN), presence and absence records (e.g., logistic regression and the generalized additive model [GAM]), or pseudo-absence data for model construction (e.g., Genetic Algorithm for Rule-set Production (GARP) and Maximum Entropy (MAXENT) (Tsoar et al. 2007). The GARP, MAXENT, and logistic regression are the methods most used to predict the distribution of invasive species (Barbosa et al. 2012) because of the greater availability of presence records compared to absence records. The MAXENT and GARP prediction performances were compared (Terribile et al. 2010). In broad unsampled regions, MAXENT reflected overfitting to the input data, whereas the GARP models successfully anticipated the distributional of most species. MAXENT performed better than GARP when the number of occurrence
records was less than 10 (Pearson 2007). We used GARP because we intended a protectionist vision, for which overfitting is not desired.

GARP uses an iterative learning process to develop a rule set defining a species’ niche relative to the environmental datasets. As the rules are generated, the expectation is that the differences between one round of prediction and the next will decrease, converging on the same predictive efficiency. The ENMs were generated using the algorithm GARP with Best Subsets (Anderson et al. 2003) in openModeller Desktop version 1.2.0 (Sutton et al. 2007, available at http://openmodeller.sourceforge.net/). In this study, the selected convergence limit was 0.01 or 1,000 interactions. A soft omission threshold was used: of the 20 models with the lowest omission error values, the 10 models with a commission value closest to the median were selected. The 10 best models were exported as an ASCII raster grid and imported into ArcMap© 10.0.

Invasive species models that have been trained on native distributional areas are advantageous because the probability that they are in distributional equilibrium is higher than that for invasive species models that have not trained nonnative distribution areas. However, occurrence data from invaded regions may offer additional insights into novel environments and biotic contexts and have also been used for this purpose (Zambrano et al. 2006; Reshetnikov and Ficetola 2011). We built three models: (1) a Native model, which utilized only records of the native range; (2) an Invasive model, which utilized only records of the invasive range; and (3) a Combined model, which utilized both native and invasive records. We used cross-validation to assess the robustness of the GARP models (Reshetnikov and Ficetola 2011). For each model, we randomly divided the presence records into five groups; we then ran the model five times with these
groups using a different group of records each time (80% as training data and 20% as test data). We used the averaged models to create the ecological niche maps. Subsequently, the models were projected onto the Brazilian landscape. Five classes of the probability of occurrence were created. The classes indicates the number of models that predicted that a given location would be suitable for the modeled species. Fixed thresholds that rejected only the lowest 10% of the possible predicted values were then applied (Ficetola et al. 2010; Reshetnikov and Ficetola 2011).

Model evaluations

To evaluate model robustness within the calibration region, we calculated the area under the receiver operating curve (AUC) for the test data of the cross-validated models by averaging the AUC of all models. To evaluate the performance of the models (i.e., the ability of the models to correctly predict the distribution of a species), we calculated the AUC using the invasive occurrence records to calibrate the Native model and the native records to calibrate the Invasive model (Reshetnikov and Ficetola 2011). The AUC ranges from 0 to a maximum value of 1.0. An AUC ≤ 0.5 indicates that the performance of the model is indistinguishable from a random pattern, an AUC ≥ 0.8 indicates good performance, and an AUC > 0.9 indicates very good performance. To analyze the sensitivity of the models, we used the error of omission, which is the capability of the models to correctly predict the presence of species outside the calibration area (Reshetnikov and Ficetola 2011). We used a binomial test to evaluate the probability of the correctness of the test points to be different from chance over the area of the generated model (Raxworthy et al. 2003).

Results
A total of 14 variables were used to build the 10 best models selected. The ENM for all species were highly robust for the calibration area (AUC values ranging from 0.7628 ± 0.0565 and 0.9867 ± 0.0253) for the native, invasive, and combined occurrences (Table 3), but the Native and Invasive models did not display good individual performances (AUC values between 0.4775 and 0.7648) for the test area. Likewise, the sensitivity of the models was good for the calibration area, with the models correctly predicting 84% to 100% of the presence of the species outside the calibration area. However, the sensitivity values were highly variable for the test area (6% to 95%). All predictions for all models were statistically significant (P-values < 0.01).

Table 3. Statistics of model building and evaluation for the native and invasive areas. AUC: the area under the curve; SE: standard error; Sensitivity: capability of the models to correctly predict the presence of the species outside the calibration area; Inv: Invasive range; Nat: Native range; Comb = Invasive + Native range; Calib: Calibration area.

<table>
<thead>
<tr>
<th>Species</th>
<th>Calibration area</th>
<th>Test area</th>
<th>AUC</th>
<th>Cross-validated ± SD</th>
<th>Sensitivity</th>
<th>Calib</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oreochromis niloticus</td>
<td>Nat</td>
<td>Inv</td>
<td>0.8716 ± 0.0298</td>
<td>0.6807</td>
<td>1</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inv</td>
<td>Nat</td>
<td>0.8457 ± 0.0475</td>
<td>0.5914</td>
<td>0.97</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>-</td>
<td>0.8173 ± 0.0273</td>
<td>-</td>
<td>0.92</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cyprinus carpio</td>
<td>Nat</td>
<td>Inv</td>
<td>0.7628 ± 0.0565</td>
<td>0.7648</td>
<td>0.94</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inv</td>
<td>Nat</td>
<td>0.9016 ± 0.0132</td>
<td>0.6826</td>
<td>0.93</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>-</td>
<td>0.8120 ± 0.0056</td>
<td>-</td>
<td>0.84</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ctenopharyngodon idella</td>
<td>Nat</td>
<td>Inv</td>
<td>0.8945 ± 0.0338</td>
<td>0.5589</td>
<td>1</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inv</td>
<td>Nat</td>
<td>0.8989 ± 0.0665</td>
<td>0.5930</td>
<td>0.98</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>-</td>
<td>0.8647 ± 0.0398</td>
<td>-</td>
<td>0.90</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hypophthalmichthys molitrix</td>
<td>Nat</td>
<td>Inv</td>
<td>0.9346 ± 0.0285</td>
<td>0.4775</td>
<td>0.97</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inv</td>
<td>Nat</td>
<td>0.9482 ± 0.0437</td>
<td>0.5605</td>
<td>0.95</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>-</td>
<td>0.8723 ± 0.0321</td>
<td>-</td>
<td>0.92</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hypophthalmichthys nobilis</td>
<td>Nat</td>
<td>Inv</td>
<td>0.9566 ± 0.0269</td>
<td>0.5000</td>
<td>0.96</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inv</td>
<td>Nat</td>
<td>0.9148 ± 0.0179</td>
<td>0.6037</td>
<td>0.89</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>-</td>
<td>0.8868 ± 0.0279</td>
<td>-</td>
<td>0.92</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

The set of the 10 best models obtained with the Combined model was used to perform projections onto the Brazilian landscape for all species, because the Native and
Invasive Models were not good predictors of the others areas. The results for tilapia (*O. niloticus*) differed from those for the carp species (Figure 1). The tilapia model for the combined range showed the best performance, with 9 to 10 models correctly predicting 102 of the 114 points. The projections of this model predicted a broad distribution across all of Brazil (Figure 1a). The Combined model for the common carp (*C. carpio*) predicted an ideal area across South and Southeast Brazil (Figure 1b). Of the 753 available occurrences (native and invasive), 581 were predicted by 9 of the 10 best models. The projections of the grass carp (*C. idella*) model were similar to those of the common carp model but were more widespread, predicting the niche fundamental area across South and Southeast Brazil as well as a portion of the Northeast region (Figure 1c). The set of the 10 best models correctly predicted 71 of 76 occurrence points. The areas predicted for the silver carp (*H. molitrix*) and bighead carp (*H. nobilis*) were similar for both models because the native and invasive ranges are very similar (Figures 1d, 1e). For the silver carp, the set of the 10 best models correctly predicted 198 of 244 occurrence points; the models for the bighead carp correctly predicted 142 of 174 occurrence points.
Discussion

Predicting invasion areas is challenging, primarily due to the uncertainty associated with the degree of conservation of the climatic niche between the native and invasive ranges and the extent to which these ranges can further affect the prediction of a biological invasion (Broennimann and Guisan 2008). The current practice, which uses the native range to train the models, fails to predict the full extent of biological invasions (Broennimann et al. 2007). The use of the combined method (including both native and invasive ranges) offers valuable insights that are potentially useful for...
predicting biological invasions (Mau-Crimmins et al. 2006; Broennimann et al. 2007; Broennimann and Guisan 2008). Our results, which are based on fish distributions and a range of environmental variables, are in agreement with the findings presented by those authors. We have demonstrated that the native and invasive ranges can be predicted individually (Table 2) but that a model based on a single type of range could not predict the occurrences in the test area, i.e., the Native models were not good predictors of the invasive range, and the Invasive models were not good predictors of the native range. This drawback of the non-combined models was noted for all species considered in our study.

Several factors may contribute to the poor predictive power of the models in the test areas. Biotic constraints, such as competitors, predators, parasites, and pathogens, or other biotic factors may be more important than the factors considered for setting the geographical range limits (Beaumont et al. 2009). In the native range, these biotic constraints can exclude the species from a portion of the area that it could potentially inhabit (i.e., the fundamental niche is constrained to the realized niche) (Broennimann and Guisan 2008). In the invaded range, however, many of the natural enemies are absent. For this reason, models trained only with the native range will fail to make accurate predictions because their predictions will not be based on the additional portions of the fundamental niche (Kolar and Lodge 2001; Keane and Crawley 2002; MacIsaac et al. 2002).

A second factor is the tendency of certain migratory species to exploit seasonal peaks in resources. The patterns of occurrence of these species are determined by seasonal variations in the environment rather than by conditions throughout the year;
these patterns may change both within and between years depending on the locations of the local resource peaks (McPherson and Jetz 2007). This seasonality factor may explain the poor results obtained in the tests involving the grass carp, silver carp, and bighead carp. These species are migratory and require seasonally variable resources, particularly high rainfall, to initiate the reproductive process.

A third factor is the potential for a shift in the fundamental niche in the invaded range due to evolutionary processes occurring after introduction (Broennimann et al. 2007; Broennimann and Guisan 2008). An exotic species may evolve in the new range and expand into new niches. Evolutionary changes can occur through genetic drift or through selection in the introduced range, thereby affecting the fundamental niche of the species (Muller-Scharer et al. 2004; Muller-Scharer and Steinger 2004). Evolutionary processes may occur during and after the time lag generally observed between the introduction and spread of an invasive species, leading to subsequent demographic and range expansions (Broennimann et al. 2007). This factor may be influential because only points where the species was already established were used to develop the models.

The projections of the combined models of the four carp species (grass, silver, bighead, and common) in Brazil showed similar distribution patterns for all species. The sites with greater environmental similarity (the highest number of models indicating the predicted similarity of the area) coincided with the areas where those species are produced in aquaculture (Fig. 1a, 1b, 1c, 1d). These results confirm the adequacy of the models because there is a positive relationship between production sites and the most favorable area for a species, which increases the risk of the establishment of these species because escapes from culture are unavoidable (Agostinho et al. 2007). An
example of this mechanism is the massive escape of more than one million individuals of several alien species in the Paraná River Basin during the floods of 1997 (Orsi and Agostinho 1999).

The pattern predicted by the model for tilapia was completely different from the pattern predicted for the carp species. The entire country was found to be potentially suitable for invasion by tilapia. This species is of particular concern because it is ideally preferred by the authorities responsible for aquaculture development in Brazil. Tilapia has long been used extensively in stocking programs, particularly in hydroelectric reservoirs, to stimulate fisheries, aquaculture, and income generation in local communities (Agostinho et al. 2007). The lack of concern about the ecological consequences of tilapia invasion by management is particularly striking (Vitule 2009).

The apparent invisibility of exotic species in the framework of Brazilian aquaculture must also be noted. Several species have been incorporated into the Brazilian fish fauna and are already considered “native” by riverine communities and the lay public (Vitule 2009). Only two databases (Species Link http://splink.cria.org.br/ and I3N http://i3n.institutohorus.org.br/www/) include extensive records of the introduction of the common carp and tilapia into several parts of Brazil, with more than 600 records of the presence of these species (Fig. 1d and 1e). However, few occurrences of grass carp, bighead carp, and silver carp are included. Most likely, the absence of these records is due not to the absence of the species but to the low interest of researchers in this subject. This lack of interest is demonstrated by the small number of Brazilian articles published on this topic. As noted by Vitule (2009), research on the
presence of nonnative species in natural environments is extremely important because it may assist efforts to review, control, monitor and even prevent invasions.

There is a consensus that prevention is the best management strategy and often the most cost-effective approach for invasive species (Leprieur et al. 2009; Vitule et al. 2009). Once invasive species are established, they are extremely difficult and costly to control or eradicate (Pimentel et al. 2001; Simberloff 2003; Gozlan et al. 2010). Hence, before releasing alien species into a system, the potential success of its establishment must be estimated, and measures to counteract the ecological aftermath of a successful establishment must be adopted (Zambrano et al. 2006).

The introduction of nonnative species causes changes in aquatic environments that may threaten the persistence of native populations (Agostinho et al. 2007). Such threats are particularly severe in megadiverse regions such as Brazil; the country harbors approximately 21% (2122 catalogued species) of the world’s freshwater fish species (Buckup et al. 2007). More than 2,000 species of fish are estimated to occur in the Amazon region alone (Winemiller et al. 2008), and a total of 262 fish species have been recorded in the Pantanal (Britski et al. 1999). As an example of the potential impact of nonnative fish species on the native fish species of these biologically diverse regions, note that the ENMs show that the Amazon and Pantanal regions are extremely suitable for tilapia. Several negative impacts on native biota have been associated with the presence of tilapia, including eutrophication, which can result in algal blooms; the growth of toxic algae and the death of fish, especially when the presence that specie is massive; predation due to the consumption of eggs, larvae, and small fish of other species by tilapia; competition with the juveniles of other species for zooplankton and
for space and spawning places (Starling et al. 2002; Canonico et al. 2005; Figueredo and Giani 2005; Attayde et al. 2007).

The ENMs seek to identify suitable climate spaces for species. However, the prediction of an area as suitable for a species does not indicate that that species can necessarily establish a population there. Many factors influence the successful establishment of non-indigenous species in a community, such as biotic interactions and dispersal ability, and these factors cannot be predicted by the ENM. We can use the predicted areas in ENM associated with the invasion history of a species and the evidence furnished by historical impacts as good indicators of the risk of invasion and of targets for regulatory efforts. We consider advisable to conduct research on the development of local native species because the continued introduction of demonstrably invasive species is undesirable. The production of native species through aquaculture can meet the animal protein needs of a growing population while sustaining the conservation of local biodiversity.

Acknowledgements

We thank the anonymous referees for their constructive and helpful review of a previous version of this manuscript. DFAT was supported by Capes – Superior scholarship and CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico project (476020/2009-3).

Bibliography

Peterson AT. (2003). Predicting the Geography of Species Invasions via Ecological Niche Modeling. The Quarterly Review of Biology, 78(4), 419–433. doi:10.1086/378926

Zengeya TA, Robertson MP, Booth AJ, Chimimba CT (2013). A qualitative ecological risk assessment of the invasive Nile tilapia, *Oreochromis niloticus* in a sub-tropical...
ANEXO III

ANÁLISE DE RISCO DE PEIXES INVASORES DA LAGOA DOS PATOS (RS)

Troc, Débora F A; Vieira, João P.
(Artigo a ser submetido)
Análise de risco de peixes invasores da Lagoa dos Patos (RS)

Débora Fernanda Avila Troca¹* e João Paes Vieira¹

¹ Laboratório de Ictiologia, Instituto de Oceanografia, Programa de Pós-Graduação em Oceanografia Biológica – Universidade Federal do Rio Grande, Caixa postal 474, 96201-900, Rio Grande, RS, Brasil

E-mail: dfatroca@yahoo.com.br (DFAT), vieira@mikrus.com.br (JPV)

*Autor correspondente
RESUMO

A introdução e dispersão de espécies não nativas é uma das maiores ameaças à biodiversidade global e à sustentabilidade ecológica. Avaliações de risco são uma ferramenta analítica que pode ser aplicada a fim de realizar previsões das possibilidades de invasão, de forma a tentar prevenir sua entrada no ambiente ou controlar e minimizar seus efeitos. Neste trabalho a análise de risco é focada na probabilidade de invasão de peixes não nativos utilizados na aquicultura dos municípios do entorno da Lagoa dos Patos e foi baseada na avaliação de risco para peixes invasores desenvolvida para o Reino Unido (IFRA – Invasive Fish Risk Assessment). Os resultados da avaliação sugerem que as espécies (carpas capim, prateada e cabeçuda) poderiam ser utilizadas na aquicultura da região, pois apesar de apresentarem impactos potenciais as chances de estabelecimento são reduzidas. Já a relação entre o risco de estabelecimento e impactos da carpa comum e da tilápia do Nilo revela que ambas espécies apresentam alto potencial invasor e alta capacidade de causar impactos e, apesar do argumento que a produção destas espécies apresenta benefícios econômicos, principalmente na subsistência de pequenos produtores rurais estas espécies deveriam ter seu uso evitado nos projetos de aquicultura do entorno da Lagoa dos Patos.
INTRODUÇÃO

A introdução e dispersão de espécies não nativas é uma das maiores ameaças à biodiversidade global e a sustentabilidade ecológica (Vitousek et al. 1996, Sala et al. 2000, Kolar & Lodge 2001). Teoricamente, não há possibilidade de uma espécie se integrar a uma nova comunidade sem que promova modificações sobre seus elementos originais, porém o nível deste impacto é variável e diversos são os efeitos que a presença de uma espécie introduzida pode produzir (Agostinho et al. 2007). Espécies invasoras podem causar mudanças em todos os níveis de organização biológicos, podendo afetar outras espécies desde o nível genético até ao ecossistema como um todo (Cucherousset & Olden 2011). O conjunto destes efeitos determina que a introdução de espécies não nativas, ou invasão biológica, seja reconhecida como uma das maiores causas de perda de biodiversidade e de recursos naturais induzidas pelo homem, sendo considerada a segunda maior causa de extinções de espécies do mundo, atrás apenas da destruição de habitats (Casal 2006). A introdução de peixes invasores, em particular é a maior causa de redução de biodiversidade em sistemas límnicos (Canonico et al. 2005, Dextrase & Mandrak 2006).

No Brasil, as introduções de peixes são bastante antigas, datam do final do século XIX, e vários são os exemplos de peixes oriundos de outros continentes, como carpas (Cyprinus carpio, Ctenopharyngodon idella, Hypophthalmichthys nobilis e H. molitrix), tilápias (Oreochromis spp. e Tilapia spp.), “blackbasses” (Micropterus salmoides) e trutas (Oncorhynchus spp) que já estão incorporados em algumas bacias do país (Vitule 2009). No final da década de 80, Welcombe (1988) identificou 20 espécies de peixes introduzidos nas bacias brasileiras. Atualmente os trabalhos disponíveis mostram que o
número de espécies de peixes introduzidos está aumentando. Por exemplo, na bacia do rio Paraná, os registros subiram de 13 (1996) para 74 espécies (2007), em Minas Gerais houve um aumento de 59 (2005) para 78 espécies (2007) (Vitule 2009). Segundo o referido autor, estes aumentos podem ter sido ocasionados por um maior esforço no levantamento de dados sobre o assunto ou por um crescimento real nas taxas de introdução, ou mais provavelmente pela união dos dois fatores. O maior esforço no levantamento de dados sobre o assunto é consequência do crescente interesse e preocupação sobre os efeitos das espécies exóticas invasoras (McGeoch et al. 2010) e existem evidências que a magnitude da ameaça das espécies exóticas invasoras está aumentando globalmente (Hulme 2009).

Avaliação de risco pode ser definida como um método sistemático que visa determinar a probabilidade dos efeitos negativos recorrentes de uma ação ou atividade e a provável magnitude destas consequências (Arthur 2008). Neste trabalho a avaliação de risco é focada na probabilidade de invasão de peixes não nativos utilizados na aquicultura. Diversas avaliações de risco para peixes de água doce já foram desenvolvidas para muitos países. A metodologia aplicada às avaliações de risco é muito variada, podendo ser quantitativa, e se baseia em traços reconhecidamente apresentados por espécies invasoras, tais como: dieta generalista, maturidade precoce, alta fecundidade, alta capacidade de dispersão, ampla tolerância fisiológica, e rápido crescimento (Kolar & Lodge 2002, Clavero 2011, Singh & Lakra 2011), ou qualitativas, onde a metodologia é baseada no conhecimento de especialistas para gerar uma pontuação que reflete o potencial invasor da espécie (Copp et al. 2005, Rowe & Wilding 2012). Outras podem associar as duas técnicas e utilizam diversas informações para determinar a probabilidade de invasão, tais como: histórico de invasões;

A análise classifica o risco de invasão de peixes através da avaliação 1) da probabilidade de introdução acidental ou proposital; 2) do risco de estabelecimento, isto é, de naturalização de uma determinada população, através do estudo da semelhança ambiental entre a área nativa e introduzida; 3) da avaliação dos impactos (econômicos, sociais e ambientais) e 4) da probabilidade de dispersão da espécie.

A avaliação de risco para peixes invasores (IFRA – *Invasive Fish Risk Assessment*) fornece um método rápido e semi-quantitativo para avaliar os riscos de permitir a entrada de peixes não nativos em uma nova região. O IFRA foi selecionado para este trabalho, porque se estende além da avaliação dos impactos referentes à perda de biodiversidade e degradação do habitat. São considerados, também, outros fatores como o risco de doenças através da introdução de parasitas e patógenos (pois estes podem ser tão ou mais perigosos que a própria espécie introduzida), além dos efeitos sociais e econômicos. A análise também considera a escala dos efeitos, a vulnerabilidade dos habitats invadidos e os setores afetados.
O presente trabalho analisa e classifica as principais espécies de peixes cultivadas na região de entorno da Lagoa dos Patos (as carpas comum *Cyprinus carpio*, capim *Ctenopharyngodon idella*, prateada *Hypophthalmichthys molitrix* e cabeçuda *H. nobilis*, e a tilápia do Nilo *Oreochromis niloticus*) quanto ao risco de introdução, estabelecimento e impactos no ambiente da Lagoa dos Patos utilizando o conhecimento científico a respeito destas espécies e do ambiente onde foram introduzidas.

MATERIAL E MÉTODOS

Área de estudo

A Lagoa dos Patos está localizada na região sul do Brasil (Fig. 1) e representa um dos maiores corpos de água doce do país. Apresenta uma extensão de 250 km e uma largura máxima de 60 km, cobrindo uma área aproximada de 10.360 km\(^2\) (Castello 1985). A Lagoa dos Patos comporta-se como uma laguna, pois recebe o aporte de água doce dos rios da parte norte da planície costeira do Rio Grande do Sul, assim como dos afluentes da Lagoa Mirim, representando um escoadouro natural de uma grande bacia hidrográfica (~200.000 km\(^2\)) para o oceano Atlântico através de um único e longo canal protegido por um par de molhes construído pelo homem (Asmus 1998, Castello 1985, Möller & Fernandes 2010).
Figura 1. Localização da Lagoa dos Patos, RS, Brasil

Análise de risco

A Avaliação de Risco para Peixes Invasores (IFRA – *Invasive Fish Risk Assessment*) se baseia no conhecimento de especialistas acerca do meio ambiente em questão e da biologia da espécie cultivada. A análise de risco foi baseada na metodologia apresentada por Copp et al. (2005). As questões foram respondidas por dois pesquisadores e na ocorrência de divergências expressivas um terceiro especialista foi consultado.

Dentro da Avaliação de Risco para Peixes Invasores são propostas três seções (Tab. 1):
a) Introdução (Questões 1.00 a 1.16). A seção de introdução avalia os riscos de introdução deliberada (R_{id}) e acidental (R_{ia}). O risco é influenciado pela abundância da espécie na fonte introdutória, e grau de uso da espécie pelos humanos.

b) Estabelecimento (Questões 2.00 a 2.08). Na análise do risco de estabelecimento é assumido que a espécie necessita de condições ambientais semelhantes a sua área nativa ou invasora para se estabelecer. Para tal deve-se usar um modelo de correspondência climática, como por exemplo, CLIMEX, MAXENT ou GARP (Sutherst & Maywald 1985, Peterson 2003, Phillips & Dudík 2008). No presente trabalho foram utilizados os modelos de similaridade ambiental do GARP (Troca & Vieira, em revisão).

c) Impacto (Questões 3.00 a 3.22). Esta seção avalia os impactos potenciais em nível social, ambiental e econômico, baseado no histórico de impactos da espécie nas áreas onde já houve invasão conhecida, na presença de setores vulneráveis e na probabilidade de impacto. A primeira pergunta na seção de impactos tem como objetivo avaliar a espécie como hospedeira de patógenos, já que doenças são um dos maiores problemas causados por peixes introduzidos (Gozlan et al. 2005, Andreou et al. 2012). A probabilidade de impacto econômico é estimada com base na presença de setores econômicos vulneráveis e o risco de estabelecimento. A probabilidade dos impactos ambientais é avaliada de acordo com a história de impactos passados e o risco de estabelecimento. A probabilidade de impacto social considera as probabilidades do risco econômico e ambiental para a área receptora. A magnitude dos impactos é afetada pela capacidade de dispersão da espécie na nova área, por isso a seção de impactos também inclui questões relativas a este tema.
Tabela 1. Protocolo de avaliação de risco *Invasive Fish Risk Assessment* (IFRA) (adaptado de Copp et al 2005) aplicado aos peixes não nativos Carpa comum (Cc), Carpa capim (Ci), Carpa prateada (Hm), Carpa cabeçuda (Hn) e Tilápia do Nilo (On), que são utilizados na aquicultura do Rio Grande do Sul. Exceto quando especificado, a pontuação é: Baixo = 1, Moderado = 2, Alto = 3.

<table>
<thead>
<tr>
<th>INTRODUÇÃO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Introdução Deliberada</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>O organismo é provável de ser importado para a área receptora?</td>
</tr>
<tr>
<td>1.01</td>
<td>Qual é a probabilidade do organismo ser importado ilegalmente para a área receptora?</td>
</tr>
<tr>
<td>1.02</td>
<td>Qual é a probabilidade de detecção do organismo durante o trajeto?</td>
</tr>
<tr>
<td>1.03</td>
<td>Matriz de pontuação do Risco De Importação Deliberado</td>
</tr>
<tr>
<td>1.04</td>
<td>Estime a probabilidade do organismo ser solto (ilegalmente) em um ambiente receptor favorável</td>
</tr>
<tr>
<td>Introdução acidental</td>
<td></td>
</tr>
<tr>
<td>1.06</td>
<td>O organismo pode entrar acidentalmente na área receptora através de cultivos?</td>
</tr>
<tr>
<td>1.07</td>
<td>O organismo pode estar associado a esta fonte desde o início do processo? Explicação: O organismo mostra uma associação temporal e espacial convincente com a via (aquicultura)</td>
</tr>
<tr>
<td>1.08</td>
<td>Qual é a chance do organismo ser associado a esse meio de entrada? Usar matriz</td>
</tr>
<tr>
<td>1.09</td>
<td>Com que frequência esse meio de entrada estará presente na área receptora?</td>
</tr>
<tr>
<td>1.10</td>
<td>PER (Pathway Exposure Risk) Usar matriz</td>
</tr>
<tr>
<td>1.11</td>
<td>A espécie é submetida a procedimentos de quarentena no seu local de origem?</td>
</tr>
<tr>
<td>1.12</td>
<td>Se a resposta a 1.11 for sim, qual aprobabilidade do organismo sobreviver ao processo/ ou permanecer indetectado?</td>
</tr>
<tr>
<td>1.13</td>
<td>Qual a probabilidade do organismo sobreviver ao transporte?</td>
</tr>
<tr>
<td>1.14</td>
<td>A espécie é submetida a procedimentos de quarentena no seu local receptor?</td>
</tr>
<tr>
<td>1.15</td>
<td>Se a resposta a 1.14 for sim, qual aprobabilidade do organismo sobreviver ao processo/ ou permanecer indetectado?</td>
</tr>
<tr>
<td>1.16</td>
<td>Qual a probabilidade de escape do organismo em um ambiente sustentável na área receptora?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESTABELECIMENTO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Similaridade Ambiental</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>Quão similares são as condições climáticas que poderiam afetar o estabelecimento do organismo (sobrevivência/reprodução) na área receptora e na de origem?</td>
</tr>
<tr>
<td>2.01</td>
<td>Qual é a qualidade dos dados climáticos utilizados na questão anterior?</td>
</tr>
<tr>
<td>2.02</td>
<td>Índice de similaridade climática - Usar matrix</td>
</tr>
<tr>
<td>2.03</td>
<td>Quão similares são os outros fatores abióticos entre as duas áreas?</td>
</tr>
<tr>
<td>2.04</td>
<td>Todos os habitats necessários para que o organismo complete seu ciclo de vida estão disponíveis na área receptora?</td>
</tr>
<tr>
<td>2.05</td>
<td>Qual a probabilidade do organismo colonizar a área e manter populações viáveis?</td>
</tr>
<tr>
<td>2.06</td>
<td>Se existirem diferenças entre as condições ambientais da área receptora e da área de distribuição natural da espécie, qual é a chance delas serem favoráveis para o potencial estabelecimento da mesma?</td>
</tr>
<tr>
<td>2.07</td>
<td>Dados os atributos biológicos dos organismos e as condições ambientais requeridas por ele, qual é a chance do mesmo ser erradicado com sucesso da área receptora?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMPACTOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>Estimar a severidade do risco de transmissão de patógenos que o organismo apresenta.</td>
</tr>
<tr>
<td>Impactos Econômicos</td>
<td></td>
</tr>
<tr>
<td>3.01</td>
<td>Existe um histórico de perdas econômicas causadas pelo organismo nas áreas onde se estabeleceu?</td>
</tr>
<tr>
<td>3.02</td>
<td>Estimar a severidade das perdas econômicas causadas pelo organismo nas áreas onde se estabeleceu.</td>
</tr>
<tr>
<td>3.03</td>
<td>Existem setores econômicos que estariam em risco pelo estabelecimento do organismo?</td>
</tr>
<tr>
<td>3.04</td>
<td>Qual a probabilidade do organismo causar impactos econômicos na área receptora?</td>
</tr>
<tr>
<td>Impactos Ambientais</td>
<td></td>
</tr>
<tr>
<td>3.06</td>
<td>O organismo tem um histórico de impactos ambientais negativos nas áreas onde se estabeleceu?</td>
</tr>
<tr>
<td>3.07</td>
<td>Estimar a severidade do impacto ambiental causado pelo organismo nas áreas onde se estabeleceu.</td>
</tr>
</tbody>
</table>
Histórico invasor

Foi realizada uma revisão da literatura sobre os impactos das principais espécies utilizadas na aquicultura brasileira (O. niloticus, C. carpio, C. idella, H. molitrix e H. nobilis). A pesquisa bibliográfica foi limitada a artigos de revistas científicas indexadas para garantir a qualidade dos dados. A pesquisa foi conduzida na base de dados on-line Web of Science. Os termos de busca, e suas variantes (identificada por *) foram: (1) invasive* or non-indigen* or introduc* or exotic or alien species; (2) impact or effect or affect or influence; (3) Nome científico e comum das espécies. Os trabalhos foram classificados em categorias: (1) Impactos sobre o ambiente ou organismos nativos; (2) Informações sobre gerenciamento ou situação de invasão; (3) Métodos de controle da invasão; (4) Estudos de distribuição da invasão; (5) Biologia da espécie nos locais invadidos; (6) Outros efeitos. Foi feito o levantamento do ano e local de publicação a fim de determinar as regiões invadidas e tempo de invasão ou percepção dos efeitos.
RESULTADOS

Análise de risco

O escore para o risco de introdução deliberada (R_{id}) foi similar para as carpas comum *Cyprinus carpio*, capim *Ctenopharyngodon idella*, prateada *Hypophthalmichthys molitrix* e cabeçuda *Hypophthalmichthys nobilis*, e a tilápia do Nilo *Oreochromis niloticus* ($R_{id} = 16$). Entretanto, na análise do risco de introdução acidental (R_{ia}), a avaliação da tilápia do Nilo ($R_{ia} = 15$) apresentou valor menor do que das outras espécies ($R_{ia} = 21$).

A pontuação do risco de estabelecimento foi positivamente e significantemente correlacionada com a pontuação do risco de impactos (Fig. 2; $r^2 = 0.97$, $P = 0.0024$). As carpas capim e prateada estão no limite entre as categorias médio e alto risco de estabelecimento, entretanto apresentam alto risco de impacto. As demais espécies (carpas comum e cabeçuda e a tilápia) apresentaram alto risco, tanto de estabelecimento como de impactos.

Observa-se na Tabela 2 a pontuação média do IFRA para as espécies analisadas. Os escores do risco de estabelecimento e de impactos foram relacionados a fim de determinar a adequabilidade do uso das espécies (Fig. 2). As linhas indicam os limites mínimos e máximos da pontuação para que o uso da espécie seja considerado como aceitável (< 35) ou inaceitável (> 53). As espécies com pontuação entre esses limites necessitam de uma detalhada avaliação de impactos ambientais, antes que seu uso seja permitido.
Tabela 2. Pontuação média do risco por fase da invasão. Média da pontuação do IFRA (Desvio Padrão)

<table>
<thead>
<tr>
<th>Risco (Pontuação Máxima possível)</th>
<th>Tilápia do Nilo</th>
<th>C. comum</th>
<th>C. capim</th>
<th>C. prateada</th>
<th>C. cabeçuda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introdução (37)</td>
<td>31</td>
<td>35,5 (±1,5)</td>
<td>35 (±2)</td>
<td>35 (±2)</td>
<td>35,5 (±1,5)</td>
</tr>
<tr>
<td>Estabelecimento (24)</td>
<td>24</td>
<td>21,5 (±0,5)</td>
<td>18 (±1)</td>
<td>17,5 (±0,5)</td>
<td>17,5 (±0,5)</td>
</tr>
<tr>
<td>Impactos (49)</td>
<td>45 (±2)</td>
<td>44,5 (±0,5)</td>
<td>41,5 (±0,5)</td>
<td>41,5 (±0,5)</td>
<td>40,5 (±1,5)</td>
</tr>
<tr>
<td>Risco total</td>
<td>100,5 (±1,5)</td>
<td>101,5 (±2,5)</td>
<td>94,5 (±3,5)</td>
<td>94(±3)</td>
<td>93,5 (±3,5)</td>
</tr>
</tbody>
</table>

Figura 2. Pontuação média do IFRA para o risco de impacto e estabelecimento das principais espécies de peixes não nativos utilizados na aquicultura do Rio Grande do Sul e pontuação máxima possível (círculo vermelho). Linhas pontilhadas horizontais e verticais indicam os limites entre as categorias de risco. Linha diagonal cinza indica a pontuação total (risco de estabelecimento mais risco de impacto) acima da qual a entrada da espécie deve ser proibida.

Histórico invasor

O levantamento bibliográfico retornou 490 trabalhos com os termos de busca. A revisão dos artigos mostrou que somente 288 tratavam sobre o tema de invasões (Tabela 3). A maioria dos artigos tratava de impactos das espécies sobre a biota nativa ou sobre as condições do ambiente onde foram introduzidas. Os resultados da distribuição dos trabalhos por categoria de assunto estão representados na Figura 3. Vários estudos foram englobados pela categoria de gerenciamento, pois tratavam sobre a situação da
invasão ou manejo da invasão. A maioria dos estudos é originada dos EUA e de países da Europa (Figura 4). A tilápia do Nilo e a carpa comum são as espécies com maior foco nos estudos referentes aos efeitos de suas introduções, 33 e 41% respectivamente, e estes estudos estão aumentando nos últimos anos, como observado na Figura 5.

Tabela 3 Resultado do levantamento bibliográfico. Número total = N° de estudos que a pesquisa retornou.

<table>
<thead>
<tr>
<th>Espécie</th>
<th>Nome comum</th>
<th>Número total de estudos</th>
<th>Estudos sobre invasões</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprinus carpio</td>
<td>Carpa comum</td>
<td>242</td>
<td>127</td>
</tr>
<tr>
<td>Oreochromis niloticus</td>
<td>Tilápia do Nilo</td>
<td>104</td>
<td>62</td>
</tr>
<tr>
<td>Ctenopharyngodon idella</td>
<td>Carpa capim</td>
<td>55</td>
<td>38</td>
</tr>
<tr>
<td>Hypophthalmichthys molitrix</td>
<td>Carpa prateada</td>
<td>58</td>
<td>35</td>
</tr>
<tr>
<td>Hypophthalmichthys nobilis</td>
<td>Carpa cabeçuda</td>
<td>31</td>
<td>26</td>
</tr>
</tbody>
</table>

Figura 3. Distribuição do número de estudos por categoria de assunto
DISCUSSÃO

Não existe confirmação que qualquer destas espécies introduzidas via aquicultura esteja estabelecida na Lagoa dos Patos. Portanto, dada à magnitude do problema e as possibilidades limitadas de erradicação, e considerando as diretrizes da Convenção sobre Diversidade Biológica (CDB 2000), que convoca seus integrantes a prevenir a introdução, controlar ou erradicar espécies não nativas que ameacem ecossistemas, habitats ou a outras espécies (Artigo 8º), é importante propor restrições e controle ao uso destas espécies e fazer previsões das possibilidades de invasão, de

Com o uso do IFRA é possível relacionar o risco de introdução com o grau de uso da espécie avaliada, a sazonalidade de introdução e a abundância da espécie. Dentre os fatores estudados neste trabalho, pode-se observar uma grande diferença entre os escores de risco de introdução acidental da tilápia do Nilo (E=15) quando comparado com as demais espécies (E=21). Esta redução é devido à sazonalidade do cultivo da tilápia do Nilo, que é produzida somente nos meses mais quentes, pois a temperatura é um fator limitante à sua produção durante os meses mais frios. A temperatura média na Lagoa dos Patos durante o inverno é em torno de 14 °C (Garcia et al. 2008). Nessa temperatura a tilápia do Nilo apresenta redução na taxa de crescimento, porém os níveis letais da espécie (abaixo de 10 °C; Wilson et al. 2009) não são atingidos. Consequentemente a temperatura limita o cultivo, mas não seria um limitante ao estabelecimento.

A probabilidade de estabelecimento é influenciada pelas possibilidades da espécie introduzida encontrar o ambiente ideal para sua manutenção (sobrevivência) e reprodução. As modelagens de similaridade ambiental são ferramentas úteis que podem indicar onde essas condições ideais ocorrem através da comparação das condições nos locais de origem (seja na área nativa ou onde a espécie já invadiu) com a área receptora (Jiménez-Valverde et al. 2011).

Os modelos de similaridade ambiental para a região da Lagoa dos Patos indicam que a região é favorável ao estabelecimento da tilápia do Nilo e da carpa comum, e parcialmente favorável às carpas capim, prateada e cabeçuda (Troca & Vieira, em
revisão). Este é o principal fator considerado pelo IFRA na avaliação da probabilidade de Estabelecimento, consequentemente, a chance de estabelecimento das carpas capim, prateada e cabeçuda é menor que da carpa comum e da tilápia do Nilo. Esta avaliação sugere que estas espécies (carpas capim, prateada e cabeçuda) poderiam ser utilizadas na aquicultura da região, pois apesar de apresentarem impactos potenciais as chances de estabelecimento são reduzidas, especialmente devido às necessidades reprodutivas destas espécies. Entretanto, estudos detalhados devem ser realizados para verificar se os rios que estão conectados ao complexo lagunar Patos/Mirim oferecem as condições necessárias para que estas espécies completem seu ciclo de vida.

O método IFRA permite ainda que se priorizem as medidas de controle, através da avaliação das probabilidades de impactos e capacidade de propagação. Exemplos de onde esta priorização deve ser exigida é a alta pontuação obtida pela tilápia do Nilo e a carpa comum nestes fatores. A análise sistemática da bibliográfica atual demonstra que existe um crescente aumento na preocupação com a invasão destas espécies em diferentes ambientes ao redor do globo, assim como com os impactos resultantes destas invasões, principalmente na Europa em relação à tilápia do Nilo, e na América do Norte em se tratando da carpa comum.

A tilápia do Nilo é a espécie mais cultivada no Brasil, representando cerca de 40% (155.450,8 ton) da produção da aquicultura continental (MPA 2012). São consideradas pelos entusiastas da espécie como os “frangos aquáticos”, pois apresentam elevado potencial produtivo, sendo uma fonte com altos rendimentos de proteína a preços acessíveis, e com facilidade de cultivo nos mais diversos ambientes (Canonico et al. 2005). Entretanto, as características que tornam esta espécie favorável para o cultivo,
tais como facilidade de reprodução, crescimento rápido e ampla tolerância às condições ambientais, também a tornam uma invasora de sucesso (Vicente & Fonseca-Alves 2013). Esta espécie já foi introduzida em pelo menos 85 países (Casal 2006) e uma série de impactos estão relacionados à sua presença, tais como redução de espécies nativas, seja através de predação de ovos ou competição, e alteração no habitat (Canonicco et al. 2005). Neste sentido, a denominação “frangos aquáticos” para as tilápias, na verdade está equivocada, e a espécie deveria ser chamada de “javali aquático”, pois apesar de suas características que a qualificam para o cultivo, sua capacidade de causar danos ambientais é muito grande (Casal 2006, Attayde et al. 2007, Khan & Panikkar 2009).

A carpa comum é a espécie com maior histórico mundial de invasão, já tendo sido introduzida em pelo menos 120 países e tendo se estabelecido em 91 destes (Casal 2006). É a espécie mais estudada em termos de impactos e gerenciamento da invasão, especialmente nos EUA, onde está estabelecida em todos os estados, com exceção do Alasca (Schofield et al. 2005). Os principais efeitos resultantes da presença desta espécie estão relacionados ao seu hábito alimentar, pois ela revira o fundo em busca de alimento, o que resulta em aumento da turbidez e alterações na biomassa de fitoplâncton, e consequentemente efeitos sobre a biomassa do zooplâncton e dos peixes nativos. Além destes fatores existem os efeitos diretos sobre as densidades de invertebrados bentônicos devido à predação, e perturbação física das macrófitas enraizadas (Kulhanek et al. 2011), ou seja, a maioria dos impactos causados pela carpa comum resulta da sua capacidade de modificar substancialmente as características físicas do habitat invadido.
A relação entre o risco de Estabelecimento e Impactos da carpa comum e da tilápia do Nilo revela que ambas espécies apresentam alto potencial invasor e alta capacidade de causar impactos e, apesar do argumento que a produção destas espécies apresenta benefícios econômicos, principalmente na subsistência de pequenos produtores rurais (Cotrim 2002), estas espécies deveriam ter seu uso evitado nos projetos de aquicultura do entorno da Lagoa dos Patos e substituídas por espécies nativas que já apresentam a tecnologia de cultivo desenvolvida (como o jundiá, a traíra, *Hoplias malabaricus*, as piavas, o dourado, o grumatã, entre outras). Esta atitude poderia ajudar a evitar o estabelecimento de espécies não nativas na região e tornar a atividade destes pequenos produtores ecologicamente sustentável.

AGRADECIMENTOS

REFERENCIAS

TROCA, DFA & J VIEIRA. (em revisão). The potential distribution of invasive alien fish species used in aquaculture in Brazil. Anexo II desta Tese.

ANEXO IV

ANÁLISE MULTICRITÉRIO APLICADA AO ESTUDO DO RISCO DE INVASÃO DE PEIXES NÃO NATIVOS UTILIZADOS NA AQUICULTURA

Troca, Débora F A; Vieira, João P.

(Artigo a ser submetido)
Análise multicritério aplicada ao estudo do risco de invasão de peixes não nativos utilizados na aquicultura

Débora Fernanda Avila Troca¹* e João Paes Vieira¹

¹ Laboratório de Ictiologia, Instituto de Oceanografia, Programa de Pós-Graduação em Oceanografia Biológica – Universidade Federal do Rio Grande, Caixa postal 474, 96201-900, Rio Grande, RS, Brasil

E-mail: dfatroca@yahoo.com.br (DFAT), vieira@mikrus.com.br (JPV)

*Autor correspondente
RESUMO

Sabe-se que a aquicultura é a maior responsável pela introdução de novas espécies no ambiente aquático. Uma das metodologias utilizadas para identificar, avaliar e gerir os riscos associados com o desenvolvimento da aquicultura é o uso de análise de risco. Este é um processo sistemático que visa determinar objetivamente a probabilidade de invasão de uma espécie não nativa em determinada área. No presente trabalho foi aplicada uma avaliação multicritério associada ao uso da ferramenta SIG para as espécies não nativas *Cyprinus carpio*, *Ctenopharyngodon idella*, *Hypophthalmichthys molitrix*, *H. nobilis* e *Oreochromis niloticus* utilizadas na aquicultura da região da Lagoa dos Patos. Com base nos seguintes critérios: Pressão de Propágulo; Potencial Invasor das Espécies; Modelo de Distribuição das Espécies e Impactos potenciais, foi realizada uma análise do risco efetivo (atual) e potencial (com a capacidade produtiva máxima). Os mapas de risco de invasão efetiva mostraram um baixo risco para a maioria das espécies e locais, com exceção para a tilápia do Nilo, carpa comum e carpa capim, nos municípios de São Lourenço do Sul e Pelotas. Já o risco potencial revela que os municípios da região norte da Lagoa dos Patos apresentaram baixo risco de invasão para as espécies avaliadas, com exceção de Viamão. Na região sul, São Lourenço do Sul e Pelotas são os que apresentam os maiores escores, com risco potencial de invasão alto para todas as espécies. A metodologia desenvolvida aqui identifica os locais e espécies com risco de invasão, fornecendo aos gerenciadores informações que podem subsidiar projetos de ordenação da atividade na região.
INTRODUÇÃO

Sabe-se que a aquicultura é a maior responsável pela introdução de novas espécies no ambiente aquático (Welcomme 1988, Naylor et al. 2001, Gozlan 2008) e vem sendo usada como um exemplo para ilustrar o crescimento da crise de introdução de espécies não nativas (Casal 2006). Consequentemente, o desenvolvimento da aquicultura como um setor emergente de produção de alimentos apresenta alguns riscos para o ambiente natural (Phillips & Subasinghe 2008).

No Brasil, a aquicultura é baseada na produção de espécies não nativas originárias de outros países e continentes, como as carpas, vindas do continente asiático e a tilápia do Nilo, nativa da África (Vitule 2009, MPA 2012). As introduções também ocorrem através de transferências entre bacias brasileiras, como por exemplo, a transferência do trairão Hoplias lacerdae e do tambaqui Colossoma macropomum da bacia Amazônica para as regiões Sudeste e Nordeste do país (Agostinho et al. 2007). Aparentemente, não existe uma preocupação do governo federal e estadual quanto aos riscos ambientais das introduções em detrimento da produção econômica e espécies como Cyprinus carpio, Ctenopharyngodon idella, Hypophthalmichthys molitrix e Oreochromis niloticus que apresentam amplo histórico de invasão (Casal 2006) continuam recebendo incentivos para produção.

O uso de análise de risco para identificar, avaliar e gerir os riscos associados com o desenvolvimento da aquicultura é uma abordagem recente (Phillips & Subasinghe 2008). As análises podem ser aplicadas para avaliar os riscos que as espécies invasoras podem impor para a sociedade e para o ambiente, contribuindo para a tomada de
decisões que irão ajudar a evitar os impactos negativos associados à atividade. Diversas avaliações de risco para peixes já foram desenvolvidas para muitos países e várias metodologias são aplicadas. Algumas avaliações são quantitativas e se baseiam em características que são reconhecidamente apresentadas por espécies invasoras (dieta generalista, maturidade precoce, alta fecundidade, alta capacidade de dispersão, ampla tolerância fisiológica, rápido crescimento, entre outras) para determinar as probabilidades de sucesso no processo de invasão (Kolar & Lodge 2001, Clavero 2011, Singh & Lakra 2011). Já Copp et al. (2005) apresenta uma metodologia baseada no conhecimento de especialistas (Fish Invasiveness Screen Kit - FISK), ou seja, é uma avaliação qualitativa, e visa determinar o potencial invasor da espécie.

Quando vários fatores são utilizados em uma análise, uma avaliação multicritério pode ser uma ferramenta efetiva para auxiliar a tomada de decisões (Miranda 2005).
metodologia consiste em hierarquizar os fatores (critérios). O objetivo da hierarquia é ordenar os critérios por importância, e garantir que nenhum elemento importante seja negligenciado, além de determinar quais critérios são significativos e evitar redundâncias no julgamento dos fatores (Keeney & Raiffa (1976) apud Terry & Burgman 2010).

Análises Multicritério podem ser associadas a Sistemas de Informações Geográficas e têm sido aplicados para determinar áreas ideais para a aquicultura (Perez et al. 2005, Radiarta et al. 2008), portanto podemos utilizar o raciocínio inverso, isto é, aplicar essa metodologia para determinar áreas de risco de invasão da espécies cultivadas. Os mapas de risco podem auxiliar no gerenciamento e planejamento da atividade de aquicultura de uma região e fundamentar a tomada de decisão dos órgãos governamentais e extencionistas na definição de espécies a serem utilizadas na aquicultura local sem expor o ambiente ao risco de invasão.

METODOLOGIA

Área de estudo

A Lagoa dos Patos está localizada na região sul do Brasil e representa um dos maiores corpos de água doce do país. Com uma extensão de 250 km e uma largura máxima de 60 km, cobre uma área aproximada de 10.360 km² (Castello 1985). A Lagoa dos Patos comporta-se como uma laguna, pois recebe o aporte de água doce dos rios da parte norte da planície costeira do Rio Grande do Sul e dos afluentes da Lagoa Mirim, representando um escoadouro natural da bacia hidrográfica (~200.000 km²) para o Oceano Atlântico através de um longo canal protegido por um par de molhes (Asmus 1998; Castello 1985; Möller & Fernandes 2010). O Rio Guaíba é o maior tributário do
sistema Patos-Mirim, junto com o Rio Camaquã e o Canal de São Gonçalo, contribuem com cerca de 85% da água da bacia de drenagem. Porém a descarga de água doce varia consideravelmente entre verão/outono e inverno/primavera (6 a 5.300 m³ s⁻¹ da bacia do Camaquã e 41 a 25.000 m³ s⁻¹ da bacia do Guaíba; Garcia 1998) podendo exceder consideravelmente os valores médios no verão e outono nos períodos de El Niño (Seeliger & Odebrecht 2010). A porção estuarina cobre cerca de 1.000 km² (Asmus 1998) e a salinidade varia entre 0 e 30, estando intimamente relacionada à descarga fluvial e à ação dos ventos (Garcia 1998). O Clima na região é subtropical e a temperatura superficial da água varia entre 9 e 30°C (Zanotta et al. 2010).

Análise de Risco de Invasão
Risco de invasão foi definido como o somatório entre a pressão de propágulo, o potencial invasor, os impactos potenciais e a similaridade ambiental entre os locais de distribuição nativa ou onde a espécie exótica é sabidamente estabelecida com o local a ser estudado.

Definição dos critérios

Foram considerados os seguintes critérios para a análise de risco de invasão:

- Pressão de Propágulos. A quantidade de indivíduos e a frequência de eventos de introdução à que o ambiente está exposto;
- Potencial Invasor da espécie, obtido através do protocolo FISK (*Fish Invasiveness Screen Kit*) (Troca & Vieira, 2012);
- Modelo de Distribuição da espécie (Troca & Vieira, em revisão¹). Indica a adequabilidade ambiental de cada espécie ao habitat estudado;
- Risco de Impactos e capacidade de Dispersão, obtidos através do protocolo IFRA (*Invasive Fish Risk Assessment*) (Troca & Vieira, em revisão²).

Pressão de propágulo é definida como a integração entre o número de indivíduos da espécie que podem ser introduzidos no local pela aquicultura e a frequência com que estas introduções podem ocorrer. A pressão de propágulos foi determinada através da média ponderada (1) dos eventos de inundação, obtidos através dos registros da Defesa Civil do Estado do Rio Grande do Sul durante o período de 1982-2012 (http://www.defesacivil.rs.gov.br/), (2) da importância relativa dos rios da bacia de drenagem dos municípios, obtido através do cálculo da razão entre a área de contribuição do rio para a bacia de drenagem dentro do município e a área total do

O potencial invasor da espécie é uma classificação quanto à capacidade de invasão da espécie em determinado local e é baseado no protocolo desenvolvido por Copp et al. (2005) para peixes invasores do Reino Unido (FISK). Foram utilizados os escores obtidos por Troca & Vieira (2012) ao avaliar as espécies não nativas cultivadas na região no entorno do estuário da Lagoa dos Patos. Ainda seguindo a metodologia destes autores as espécies foram classificadas quanto aos impactos potenciais (Invasive Fish Risk Assessment – IFRA). Utilizou-se apenas os escores referentes aos impactos potenciais e a capacidade de dispersão (Troca & Vieira, em revisão²).

A similaridade ambiental está relacionada à capacidade de sobrevivência e reprodução da espécie no local onde foi introduzida. Através da utilização de algoritmos genéticos como o GARP (Genetic Algorithm for Rule set Prediction), pode-se ser capaz de quantificar o percentual de semelhança ambiental entre a fonte e o local de destino do organismo (Peterson 2003). O algoritmo usa um processo de aprendizagem
interativo para desenvolver um conjunto de regras e definir o nicho da espécie relativo ao conjunto de dados ambientais fornecidos. Este nicho é então projetado e pode-se identificar as áreas ambientalmente adequadas para a espécie invasora. Foram utilizados os modelos de similaridade ambiental desenvolvidos em Troca & Vieira (em revisão).

Tabela 1. Número de Cultivos (Cultivos), Número de Açudes (Açudes), Eventos de Inundações (Inundações) e Densidade de Rios por km²(Dens. de Rios), por municípios do entorno da Lagoa dos Patos.

<table>
<thead>
<tr>
<th>Critérios/Município</th>
<th>Cultivos</th>
<th>Açudes</th>
<th>Inundações</th>
<th>Dens.de Rios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rio Grande</td>
<td>25</td>
<td>279</td>
<td>6</td>
<td>0,077</td>
</tr>
<tr>
<td>Pelotas</td>
<td>175</td>
<td>750</td>
<td>7</td>
<td>0,137</td>
</tr>
<tr>
<td>Turuçu</td>
<td>44</td>
<td>87</td>
<td>4</td>
<td>0,227</td>
</tr>
<tr>
<td>São Lourenço do Sul</td>
<td>617</td>
<td>962</td>
<td>8</td>
<td>0,120</td>
</tr>
<tr>
<td>Arambaré</td>
<td>0</td>
<td>29</td>
<td>5</td>
<td>0,147</td>
</tr>
<tr>
<td>Camaquã</td>
<td>0</td>
<td>500</td>
<td>6</td>
<td>0,129</td>
</tr>
<tr>
<td>Tapes</td>
<td>20</td>
<td>135</td>
<td>3</td>
<td>0,137</td>
</tr>
<tr>
<td>Barra</td>
<td>5</td>
<td>38</td>
<td>6</td>
<td>0,149</td>
</tr>
<tr>
<td>Viamão</td>
<td>15</td>
<td>866</td>
<td>2</td>
<td>0,112</td>
</tr>
<tr>
<td>Palmares do Sul</td>
<td>0</td>
<td>48</td>
<td>4</td>
<td>0,107</td>
</tr>
<tr>
<td>Capivari do Sul</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,249</td>
</tr>
<tr>
<td>Mostardas</td>
<td>0</td>
<td>38</td>
<td>5</td>
<td>0,017</td>
</tr>
<tr>
<td>Tavares</td>
<td>0</td>
<td>298</td>
<td>11</td>
<td>0,209</td>
</tr>
<tr>
<td>São José do Norte</td>
<td>0</td>
<td>212</td>
<td>5</td>
<td>0,002</td>
</tr>
</tbody>
</table>

Normalização dos critérios

Este processo permitiu que valores de critérios não comparáveis entre si fossem normalizados para uma mesma escala a fim de possibilitar a comparação entre os diferentes atributos (Miranda 2005). Tanto os critérios constituintes da Pressão de Propágulo, quanto os fatores utilizados diretamente na análise de risco foram normalizados para o intervalo real (0,1) utilizando a equação 1.

Fórmula da normalização
\[g(x) = \frac{x - x_{min}}{x_{max} - x_{min}} \times \text{intervalo de padronização} \] (1)

Onde \(x \) é o dado bruto e o intervalo de padronização =1.

O critério “Número de cultivos” foi padronizado utilizando a proporção em relação ao critério “Número de açudes”, ou seja, na padronização do numero de cultivos foi utilizado como valor máximo o número de açudes, para que fosse possível manter a percepção entre a condição atual e potencial.

Tabela 2. Distribuição por município do entorno da Lagoa dos Patos dos critérios utilizados na análise. Os critérios foram normalizados para o intervalo entre 0 e 1. Os valores máximos e mínimos utilizados na normalização são informados no final da tabela. FISK = Potencial Invasor da espécie; IFRA = Risco de Impactos e capacidade de Dispersão; MDE = Modelo de Distribuição de Espécies.

<table>
<thead>
<tr>
<th>Critérios</th>
<th>Pressão de propágulos</th>
<th>MDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Município</td>
<td>Atual</td>
<td>Potencial</td>
</tr>
<tr>
<td>Rio Grande</td>
<td>0,03</td>
<td>0,29</td>
</tr>
<tr>
<td>Pelotas</td>
<td>0,19</td>
<td>0,78</td>
</tr>
<tr>
<td>Turuçu</td>
<td>0,05</td>
<td>0,09</td>
</tr>
<tr>
<td>São Lourenço do Sul</td>
<td>0,64</td>
<td>1,00</td>
</tr>
<tr>
<td>Arambaré</td>
<td>0,01</td>
<td>0,03</td>
</tr>
<tr>
<td>Camaquã</td>
<td>0,01</td>
<td>0,52</td>
</tr>
<tr>
<td>Tapes</td>
<td>0,02</td>
<td>0,14</td>
</tr>
<tr>
<td>Barra do Ribeiro</td>
<td>0,01</td>
<td>0,05</td>
</tr>
<tr>
<td>Viamão</td>
<td>0,02</td>
<td>0,89</td>
</tr>
<tr>
<td>Palmares do Sul</td>
<td>0</td>
<td>0,05</td>
</tr>
<tr>
<td>Capivari do Sul</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mostardas</td>
<td>0,01</td>
<td>0,04</td>
</tr>
<tr>
<td>Tavares</td>
<td>0,01</td>
<td>0,32</td>
</tr>
<tr>
<td>São José do Norte</td>
<td>0,01</td>
<td>0,22</td>
</tr>
<tr>
<td>Mínimo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Máximo</td>
<td>962</td>
<td>962</td>
</tr>
<tr>
<td>FISK*</td>
<td>0,70</td>
<td>0,59</td>
</tr>
<tr>
<td>IFRA**</td>
<td>0,92</td>
<td>0,91</td>
</tr>
</tbody>
</table>
Definição do Peso dos critérios

O peso final de cada variável foi estimado através do método AHP (Analytical Hierarchy Process – Processo de Hierarquização Analítica), sendo que a atribuição de pesos aos critérios é a tradução numérica da importância relativa de cada um deles no processo de decisão. Este método envolve uma comparação par a par entre os critérios utilizados. Os valores representam a importância relativa em uma escala de 1 a 9, onde 1, 3, 5, 7 e 9 indicam, respectivamente, se os critérios são “igualmente”, “moderadamente”, “fortemente”, “muito fortemente” e “extremamente importantes”, quando comparados entre si, e 2, 4, 6 e 8 são valores intermediários que podem ser usados se necessários. Ao final é calculada a taxa de consistência (TC) que determina se a avaliação foi bem sucedida ou não. Baixos valores de TC (menor que 0.1) indicam uma boa consistência (Saaty 1977). Foi utilizada a ferramenta AHP do ArcMap 10.1 para o cálculo dos pesos. A importância relativa atribuída a cada critério foi definida como segue: A Pressão de Propágulos foi considerada o fator mais importante, uma vez que se a espécie não for introduzida, a invasão não ocorre e nenhum dos outros fatores terá efeito. A importância do Potencial Invasor foi considerada semelhante aos Modelos de Distribuição de Espécies (MDE), porque mesmo que as espécies apresentem elevado potencial invasor é necessário que ela encontre as condições ambientais ideais para que a invasão possa ocorrer. Já os impactos foram definidos com a menor importância no processo invasor porque é necessário que a espécie esteja presente (Pressão de Propágulos), encontre as condições ideais para sobreviver (MDE), e invada (Potencial Invasor) para só então causar efeitos. Os pesos ponderados obtidos estão apresentados na Tabela 3.
Tabela 3. Matriz de comparação pareada entre os critérios. MDE– Modelo de distribuição de Espécies. Taxa de Consistência (TC) = 0.0978.

<table>
<thead>
<tr>
<th></th>
<th>Pressão de propágulo</th>
<th>Potencial Invasor</th>
<th>MDE</th>
<th>Risco de Impactos</th>
<th>Pesos Ponderados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressão de propágulo</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>0.682</td>
</tr>
<tr>
<td>Potencial Invasor</td>
<td>0.1429</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0.1249</td>
</tr>
<tr>
<td>MDE</td>
<td>0.1429</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0.1454</td>
</tr>
<tr>
<td>Risco de Impactos</td>
<td>0.1429</td>
<td>0.33</td>
<td>0.2</td>
<td>1</td>
<td>0.0512</td>
</tr>
</tbody>
</table>

Combinação dos critérios

Os critérios foram combinados utilizando o método de Combinação Linear Ponderada (WLC, *Weighted Linear Combination*), onde o valor (Escore) de cada critério normalizado é multiplicado pelo seu respectivo peso.

Dois cenários com foco na mudança na “pressão de propágulos” a qual o ambiente está exposto foram modelados: (i) Risco de Invasão Efetivo que considera os critérios número de cultivos e eventos de inundação como pressão de propágulo atual e (ii) Risco de Invasão Potencial, que substitui o número de cultivos pela quantidade de açudes presentes nas propriedades, de modo que este representa a pressão de propágulos na capacidade produtiva total da região.

O risco foi classificado em cinco classes como segue: Muito Baixo (0 – 0.20); Baixo (0.21 – 0.40); Médio (0.41 – 0.60); Alto (0.61 – 0.80); Muito Alto (0.81 – 1).

Toda a análise foi desenvolvida utilizando o software de Sistema de Informações Geográficas ArcGIS Desktop 10.1.

RESULTADOS

Os valores de risco de invasão efetivo variaram entre um mínimo de 0.09 para a carpa capim em Capivari do Sul e Palmares do Sul, e para a carpa cabeçuda em Palmares do Sul, para um máximo de 0.72 para a tilápia do Nilo em São Lourenço do Sul (Fig. 1a). O risco de invasão potencial apresentou uma maior amplitude de variação, variando de 0.09 para a carpa capim e carpa cabeçuda em Capivari do Sul até 0.96 para a tilápia do Nilo em São Lourenço do Sul (Fig. 1b).
Figura 1 Valores calculados para o risco efetivo (a) e potencial (b) de invasão para cada espécie analisada por município do entorno da Lagoa dos Patos. SLS = São Lourenço do Sul; SJN = São José do Norte.

Os mapas de risco de invasão para a Tilápia do Nilo *Oreochromis niloticus* (Fig. 2); Carpa comum *Cyprinus carpio* (Fig. 3); Carpa capim *Ctenopharyngodon idella* (Fig. 4); Carpa prateada *Hypophthalmichthys molitrix* (Fig. 5) e Carpa cabeçuda *H. nobilis* (Fig. 6) representam a soma ponderada dos critérios utilizados na análise de risco.

Os mapas de risco de invasão efetiva mostraram um baixo risco para a maioria das espécies e locais (Fig. 2a, 3a, 4a, 5a e 6a), com exceção de São Lourenço do Sul que apresentou alto risco para a tilápia do Nilo, carpa comum e carpa capim, e médio risco para as carpas prateada e cabeçuda, assim como Pelotas que apresentou médio risco para a tilápia do Nilo.

A análise dos mapas de risco potencial (Fig. 2b, 3b, 4b, 5a e 6b) revela que os municípios da região norte da Lagoa dos Patos (Arambaré, Tapes, Barra do Ribeiro, Capivari do Sul, Palmares do Sul e Mostardas) apresentaram risco de invasão muito baixo ou baixo para as espécies avaliadas. A exceção foi Viamão, que apresenta risco muito alto para a tilápia do Nilo, e alto para as demais espécies. Na região sul da Lagoa
dos Patos o risco potencial de invasão para os municípios de São Lourenço do Sul e Pelotas são os que apresentam os maiores escores, com risco potencial de invasão alto a muito alto para todas as espécies.

Figura 2. Análise de risco de invasão efetiva (a) e potencial (b) da tilápia do Nilo *O. niloticus* para os municípios do entorno da Lagoa dos Patos, RS. Risco Médio (Efetivo = 0.33; Potencial = 0.49)
Figura 3. Análise de risco de invasão efetiva (a) e potencial (b) da carpa comum *C. carpio* para os municípios do entorno da Lagoa dos Patos, RS. Risco Médio (Efetivo = 0.26; Potencial = 0.42)

Figura 4. Análise de risco de invasão efetiva (a) e potencial (b) da carpa capim *C. idella* para os municípios do entorno da Lagoa dos Patos, RS. Risco Médio (Efetivo = 0.19; Potencial = 0.35)
Figura 5. Análise de risco de invasão efetiva (a) e potencial (b) da carpa prateada *H. molitrix* para os municípios do entorno da Lagoa dos Patos, RS. Risco Médio (Efetivo = 0.18; Potencial = 0.35)

Figura 6. Análise de risco de invasão efetiva (a) e potencial (b) da carpa cabeçuda *H. nobilis* para os municípios do entorno da Lagoa dos Patos, RS. Risco Médio (Efetivo = 0.19; Potencial = 0.36)
As contribuições dos fatores para o risco de invasão variaram entre as espécies e entre os municípios. Para a tilápia do Nilo a pressão de propágulos foi o fator determinante para a diferença do risco efetivo entre os municípios, pois a contribuição dos outros fatores é semelhante em toda a região. A mesma situação ocorre para o risco potencial (Fig. 7a). Já para as carpas observa-se que além da pressão de propágulos os modelos de distribuição de espécies também tiveram influência na variação do risco efetivo e potencial (Fig. 7b, 7c, 7d e 7e).
DISCUSSÃO

A avaliação do risco de invasão permite que os programas de gerenciamento e controle de espécies invasoras sejam focados na fase mais eficaz de controle do processo de invasão, o pré-estabelecimento (Ricciardi & Atkinson 2004). As medidas preventivas dependem do conhecimento prévio das ameaças de invasão e, mesmo quando a invasão é iminente, o conhecimento prévio deve nos preparar para lidar com os impactos ecológicos que podem seguir (Ricciardi & Rasmussen 1998). Portanto, uma
maior ênfase dos esforços deve ser focada na prevenção, principalmente devido aos altos custos econômicos para controle da invasão e aos impactos ecológicos, que muitas vezes são irreversíveis. Estes fatos corroboram para a importância das avaliações de risco.

A avaliação de risco pode ser associada a um Sistema de Informações Geográficas (SIGs), permitindo a visualização espacial do risco de invasão em determinada área. Os mapas de risco de invasão foram baseados na sobreposição dos fatores que constituem a análise de risco (Pressão de Propágulos - PP, Potencial Invasor - PI, Modelos de Distribuição de Espécies – MDE e Impactos Potenciais - IP) e são específicos para esta área, pois os níveis de risco são definidos comparativamente entre os municípios avaliados. Os resultados da avaliação de risco classificou a tilápia do Nilo como a espécie com maior risco médio (RM) de invasão na região (RM Efetivo = 0,33 e RM Potencial = 0,49), seguida pela carpa comum (RM Efetivo = 0,26 e RM Potencial = 0,42).

O município de São Lourenço do Sul apresenta os maiores escores de risco de invasão efetivo e se destaca como o mais sucessível à invasão de todas as espécies analisadas. Isto ocorre devido a influência do fator Pressão de Propágulos, pois, o município se diferencia dos demais por apresentar a maior quantidade de açudes da região. A diferença entre as classes de risco das carpas prateada e cabeçuda (média) em relação às outras espécies (alta) se deve à influência de uma combinação entre os Modelos de Distribuição de Espécies e o Potencial Invasor.

Já em Pelotas, somente o risco efetivo da tilápia do Nilo se sobressai. Neste município, o fator que influenciou a diferença no escore final do risco foi o Potencial Invasor. Quando compomosos fatores da tilápia com a carpa comum podemos observar que os escores dos Impactos Potenciais e os valores resultantes do Modelo de Distribuição de Espécies são muito próximos, e como a Pressão de Propágulos é a mesma para o município, a diferença na classificação de risco está claramente associada ao potencial invasor.

O efeito da Pressão de propágulos pode ser observado através da comparação do risco de invasão efetivo e potencial. As maiores diferenças ocorreram em Viamão, Pelotas e Camaquã. Em Pelotas, o risco de invasão da carpa comum e da carpa capim subiu de baixo para alto, e da tilápia do Nilo subiu de médio para muito alto. Em Viamão esse efeito é ainda mais expressivo, com o risco das carpas comum, capim, prateada e cabeçuda se elevando de muito baixo para alto e da tilápia do Nilo de baixo para muito alto. Estas alterações ocorrem nas regiões com elevada capacidade de crescimento da atividade de cultivo. Em Viamão existem atualmente somente 15 cultivos, entretanto, a capacidade produtiva pode chegar a 866 unidades (número de
açudes no município). Desta forma, o nível de risco de invasão foi fortemente afetado pela Pressão de Propágulos, devido à importância relativa dada a este fator na análise.

A metodologia aqui apresentada é dinâmica e adaptável a outras espécies e regiões. Porém devemos ressaltar que o fator Pressão de Propágulo (PP) é específico para a região estudada. Não sendo possível a comparação de análises feitas para diferentes regiões, a não ser que se utilize o somatório das variáveis constituintes do fator PP (número de cultivos ou de açudes, densidade de rios e eventos de inundação) das regiões em comparação na padronização destas variáveis. É possível ainda, refinar a escala dos fatores, como acrescentar a abundância das espécies, de maneira que mostre mais detalhadamente o risco de invasão.

Por exemplo, apesar da tilápia do Nilo representar risco de invasão semelhante ao da carpa capim em São Lourenço do Sul (alto), a produção atual da carpa capim é dez vezes maior que da tilápia do Nilo. O mesmo ocorre em Pelotas, onde 70% da produção é de carpa capim (baixo risco) e a tilápia do Nilo (médio) nem é cultivada (Troca, 2009). Ao considerarmos este fator, políticas de controle ou de proibição direcionadas podem ser aplicadas de maneira a causar o menor descontentamento ao setor produtivo possível. Assim, a melhor maneira de evitar a invasão da tilápia do Nilo seria a proibição da introdução. Quanto à carpa capim, que já apresenta preferência de cultivo pelos produtores, poderia ser aplicado medidas de controle alternativas, como o uso de indivíduos triploides e fiscalização nos açudes quanto ao perigo de fuga, etc. No entanto esta medida, se equacionada efetivamente, sempre será mais dispendiosa para o estado e consequentemente para a sociedade, do que medidas de prevenção.

CONCLUSÕES
O método aqui apresentado serve para identificar o nível de risco de invasão das espécies, auxiliar a tomada de decisão quanto ao uso na aquicultura e indicar aos gerenciadores espécies problemáticas onde devem direcionar os esforços de controle, visando desenvolver a atividade de maneira mais sustentável possível. Neste sentido podemos recomendar que antes da execução de novos projetos de incentivo a aquicultura, que vem sendo um foco de investimentos do governo, tanto federal como estadual, sejam realizadas análises de risco de invasão de maneira que a questão ambiental seja levada em consideração seriamente, e não seja ignorada em prol dos benefícios sociais e econômicos.

AGRADECIMENTOS

Os autores agradecem à Valéria Marques Lemos pela revisão deste manuscrito. A autora Débora Troca agradece a CAPES pela bolsa de doutorado. Este trabalho recebeu recursos financeiros do CNPq (Edital MCT/CNPq/CT-Hidro/MPA nº 18/2010 Processo 561425/2010-8)

REFERENCIAS

TROCA, DFA. 2009. Levantamento dos cultivos de peixes exóticos no entorno do estuário da Lagoa Dos Patos (RS) e análise de risco de invasão. (Dissertação) Universidade Federal do Rio Grande. 79p.

TROCA, DFA & JP VIEIRA (em revisão¹). The potential distribution of invasive alien fish species used in aquaculture in Brazil. Anexo II desta Tese.

ANEXO V

SITUAÇÃO ATUAL DA INVASÃO DE PEIXES NÃO NATIVOS NA LAGOA DOS PATOS, RS, BRASIL

Troca, Débora F A; Vieira, João P.
(Artigo a ser submetido)
Situação atual da invasão de peixes não nativos na Lagoa dos Patos, RS, Brasil

Débora Fernanda Avila Troca1,* e João Paes Vieira1

1Laboratório de Ictiologia, Instituto de Oceanografia, Programa de Pós-Graduação em Oceanografia Biológica – Universidade Federal do Rio Grande, Caixa postal 474, 96201-900, Rio Grande, RS, Brasil

E-mail: dfatroca@yahoo.com.br (DFAT), vieira@mikrus.com.br (JPV)

*Autor correspondente
RESUMO

A aquicultura é a maior responsável pela introdução de novas espécies no ambiente aquático. O Rio Grande do Sul é o maior produtor nacional de peixes cultivados, principalmente de carpas. Na bacia da Lagoa dos Patos já foram registrados várias espécies não nativas oriundas de escapes acidentais de pisciculturas, como as carpas *Cyprinus carpio*, *Ctenopharyngodon idella*, *Hypophthalmichthys molitrix*, *H. nobilis*, as tilápias *Oreochromis niloticus* e *Tilapia sp.* e os catfishes *Ictalurus punctatus* e *Clarias gariepinus*. No entanto, não se tem conhecimento de que estas espécies estejam estabelecidas no corpo lagunar, portanto o monitoramento se faz necessário para determinar a atual situação de invasão na Lagoa dos Patos. Para tal foi feito o acompanhamento das capturas de espécies não nativas pelos pescadores artesanais e amostragens em zonas rasas. Foram capturados adultos de 4 espécies não nativas: *Cyprinus carpio*, *Ctenopharyngodon idella*, *Oreochromis niloticus* e *Tilapia rendalli*. Nenhum exemplar juvenil foi capturado no período de coleta. Os resultados indicam que as principais espécies de peixes não nativos utilizadas na aquicultura da região do entorno da Lagoa dos Patos, apesar de estarem presentes no ambiente natural sob a forma adulta, aparentemente não estão estabelecidas na região.

INTRODUÇÃO

A aquicultura é a maior responsável pela introdução de novas espécies no ambiente aquático (Welcomme 1988, Naylor et al. 2001, Gozlan 2008). O Brasil contribui com esta estatística, já que em 2010, mais de 60% da produção da aquicultura continental nacional foi de carpas e tilápias (MPA 2012). Atualmente o Rio Grande do Sul (RS) é o maior produtor nacional de peixes cultivados, contribuindo com 14% da
produção (MPA 2012), e as carpas são a base da aquicultura do estado, sendo que em 2007 representaram 90% (21.401 toneladas) do total produzido no RS (IBAMA 2007).

As carpas asiáticas são amplamente utilizadas na aquicultura mundial, com mais de 70% da produção de peixes da água doce (FAO 2012). A carpa comum *Cyprinus carpio*, espécie originária da Europa Oriental e da Ásia Ocidental, foi uma das primeiras espécies a serem cultivadas, especialmente devido a sua rusticidade e resistência a diferentes condições ambientais, sendo que já foi introduzida em mais de 120 países (Casal 2006). A carpa capim *Ctenopharyngodon idella* é um dos maiores membros da família Cyprinidae, podendo pesar entre 30 – 50 kg, e medir mais de 1 m (Cudmore & Mandrak 2004). A carpa capim é uma espécie de clima subtropical a temperado, e apresenta distribuição nativa nos grandes rios e lagos do leste asiático, sendo que já foi introduzida em pelo menos 90 países (Casal 2006) especialmente para controle de macrófitas aquáticas e para a aquicultura (Welcomme 1988). As carpas do gênero *Hypophthalmichthys* (carpa prateada e cabeça grande) também são nativas do leste asiático, entretanto, sua introdução generalizada é um fenômeno mais recente (Kolar et al. 2005). Estas carpas se estabeleceram nos grandes rios americanos, como Mississippi e o Illinois (Chick & Pegg 2001). Além dos efeitos ecológicos destas espécies sobre os organismos planctônicos, resultantes de seu hábito alimentar, existe também um efeito curioso, relacionados ao hábito da carpa prateada de saltar para fora d’água, sendo frequentes relatos de pessoas atingidas pelos peixes enquanto navegam nestas áreas (Kolar et al. 2005).

A tilapia do Nilo *Oreochromis niloticus* é o carro chefe da aquicultura brasileira (Ostrensky et al. 2008). Esta espécie de Cichlidae é originária da África e já foi introduzida em 85 países (Casal 2006), principalmente para incrementar as pescarias e

não nativas na Lagoa dos Patos a fim determinar a atual situação de invasão neste ambiente.

METODOLOGIA

A Lagoa dos Patos está localizada na região sul do Brasil e representa um dos maiores corpos de água doce do país. Recebe o aporte de água doce dos rios da parte norte da planície costeira do Rio Grande do Sul e dos afluentes da Lagoa Mirim, representando um escoadouro natural da bacia hidrográfica (~200.000 km²) para o Oceano Atlântico através de um longo canal protegido por um par de molhes (Fig 1) (Asmus 1998). O Rio Guaíba é o maior tributário do sistema Patos-Mirim, junto com o Rio Camaquã e o Canal de São Gonçalo, contribuem com cerca de 85% da água da bacia de drenagem.
Figura 1. Sistema Patos-Mirim e principais rios contribuintes para a bacia de drenagem.

O monitoramento da ocorrência de espécies não nativas no ambiente lagunar ocorreu através de amostragens do projeto de Pesquisas Ecológicas de Longa Duração FURG - Ictiologia (PELD) na região estuarina da Lagoa dos Patos, com coletas sazonais durante os anos de 2009 a 2012, nos ambientes marginais e entrevistas junto aos pescadores artesanais em 9 pontos de desembarque pesqueiro, como segue: Rio Grande, Pelotas (Barra e Z3), São Lourenço do Sul (Prainha e Japesca), Tapes (Colônia de pescadores), Barra do Ribeiro, Palmares do Sul (Palmares Pescados) e São José do Norte (Fig. 2a).
Para as amostragens de juvenis foi utilizada uma rede do tipo Coca (modelo trawl – 9 m de largura e 2,4 m de altura, malha de 13 mm entre nós nas asas e 5 mm no saco) operando em profundidades de até 1,5 m (Vieira et al. 2006). As amostragens foram realizadas em pequenos arroios e na margem da Lagoa dos Patos (Fig. 2b).

O acompanhamento da presença de adultos foi feito através de contato com pescadores e obtenção dos exemplares capturados pela pesca. Foi fornecida um catálogo para identificação das espécies em questão (foto, nome comum e científico), e um camburão de 30 L contendo solução de formoldeído a 10%, para acondicionamento dos exemplares. As visitas foram sazonais, e os contatos telefônicos mensais, permitindo monitorar a captura de espécimes.

Figura 2. Locais de acompanhamento das capturas dos pescadores artesanais (a) e coletas de juvenis em zonas rasas na região estuarina (b)
RESULTADOS

Os pescadores artesanais capturaram 13 exemplares de 4 espécies não nativas: *Cyprinus carpio* (N=8), *Cyprinus carpio* (N=1), *Ctenopharyngodon idella* (N=2), *Oreochromis niloticus* (N=1) e *Tilapia rendalli* (N=1) (Tabela 1) durante o período de monitoramento. Foi incorporado aos resultados dados de uma coleta realizada no Arroio Pelotas, que não fazia parte da área original do monitoramento. Essa amostragem foi realizada após indicação da ocorrência de capturas de espécies não nativas neste ambiente.

As coletas do programa de acompanhamento da ictiofauna de zonas rasas (PELD) resultaram na captura de cerca de 200.000 indivíduos de 47 espécies durante o período deste estudo (Vieira, dados não publicados), entretanto não houve ocorrência de indivíduos juvenis de espécies não nativas.

Tabela 1. Indivíduos obtidos através do acompanhamento da pesca artesanal. CT = Comprimento Total; PT = Peso Total

<table>
<thead>
<tr>
<th>Espécies</th>
<th>Data</th>
<th>Local</th>
<th>Sexo</th>
<th>CT</th>
<th>PT</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. carpio</td>
<td>09/2009</td>
<td>31°37'S 52°21'O</td>
<td>♀</td>
<td>430</td>
<td>1890.0</td>
<td>Arroio Pelotas</td>
</tr>
<tr>
<td>C. carpio</td>
<td>09/2009</td>
<td>31°37'S 52°21'O</td>
<td>♀</td>
<td>480</td>
<td>1440.0</td>
<td>Arroio Pelotas</td>
</tr>
<tr>
<td>C. carpio</td>
<td>09/2009</td>
<td>31°37'S 52°21'O</td>
<td>♂</td>
<td>595</td>
<td>3420</td>
<td>Arroio Pelotas</td>
</tr>
<tr>
<td>C. carpio</td>
<td>09/2009</td>
<td>31°37'S 52°21'O</td>
<td>♀</td>
<td>565</td>
<td>3170</td>
<td>Arroio Pelotas</td>
</tr>
<tr>
<td>C. carpio</td>
<td>09/2009</td>
<td>31°37'S 52°21'O</td>
<td>♀</td>
<td>625</td>
<td>3310</td>
<td>Arroio Pelotas</td>
</tr>
<tr>
<td>C. carpio</td>
<td>11/2011</td>
<td>30°41'S 51°16'O</td>
<td>♀</td>
<td>505</td>
<td>2395.7</td>
<td>Barra do Ribeiro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Matura – Peso Gônada = 38.5 g</td>
</tr>
<tr>
<td>C. carpio</td>
<td>11/2011</td>
<td>30°41'S 51°22'O</td>
<td>♂</td>
<td>450</td>
<td>2917.4</td>
<td>Tapes</td>
</tr>
<tr>
<td>C. carpio</td>
<td>11/2011</td>
<td>30°41'S 51°22'O</td>
<td>♂</td>
<td>608</td>
<td>2844.3</td>
<td>Tapes</td>
</tr>
</tbody>
</table>
DISCUSSÃO

Outras espécies não nativas já foram registradas na bacia da Lagoa dos Patos, mas não apresentam confirmação de estabelecimento neste trabalho. Nos rios da porção norte da bacia da Lagoa dos Patos, como o Rio dos Sinos, três espécie registradas neste
trabalho (carpa comum, capim e tilapia do Nilo) são capturadas frequentemente (Leal et al. 2009), e algumas (carpas) estão entre as principais espécies exploradas pelos pescadores artesanais da região (Garcez 2005). No entanto, a presença destas espécies é relacionada a escapes de piscicultura (Leal et al. 2009). No Rio Taquari-Antas, as espécies não nativas ocorrem em baixa abundância, e apenas a carpa comum apresenta indícios de reprodução (Becker et al. 2013). No corpo principal da Lagoa dos Patos os resultados indicam este mesmo padrão, com poucos exemplares sendo capturados, e apenas os exemplares de carpa comum apresentando algum indício de atividade reprodutiva (Troca et al. 2012). Já no arroio Pelotas foram capturados cinco indivíduos de carpa comum em uma única amostragem e dentre estes quatro fêmeas estavam maturas. Estes exemplares provavelmente escaparam de uma unidade produtiva localizada cerca de 10 km a montante do local de amostra.

Entretanto, a alta incidência de exemplares maturos de *C. carpio*, associada à ausência de juvenis, pode sugerir uma falha no processo de amostragem dos juvenis, seja pelo local de coleta ou pelo petrecho utilizado. Coletas específicas poderiam ser realizadas em locais estratégicos para esta espécie.

A baixa incidência de capturas durante o acompanhamento feito nesta pesquisa confirma a hipóteses do não estabelecimento das espécies utilizadas na aquicultura no corpo principal da Lagoa dos Patos, e reforça que ainda existe a possibilidade de prevenir a invasão de espécies potencialmente perigosas para a região, como a tilapia-do-Nilo e a carpa comum. Estas espécies apresentam elevado risco de invasão para a região (Troca & Vieira, em revisão), podendo ser projetado uma série de impactos relacionados à sua presença, tais como redução da biodiversidade, seja através de predação de ovos ou competição com espécies nativas, e alteração no habitat, como por exemplo, aumento da eutrofização e destruição de vegetação (Canonico et al. 2005).

CONCLUSÕES

As principais espécies de peixes não nativos utilizadas na aquicultura da região do entorno da Lagoa dos Patos, apesar de estarem presentes no ambiente natural sob a forma de adultas, aparentemente não estão estabelecidas na região, isto é, não estão mantendo populações autossustentáveis no ambiente lagunar, pois não são encontradas formas juvenis. Entretanto a situação da carpa comum deve ser acompanhada com atenção, principalmente devido a alta proporção de exemplares maturos capturados durante este trabalho.
REFERENCIAS

CASAL CMV. (2006) Global documentation of fish introductions: the growing crisis and recommendations for action. Biological Invasions, 8: 3-

TROCA DFA & VIEIRA JP. (em revisão) Análise multicritério aplicada ao estudo do risco de invasão de peixes não nativos utilizados na aquicultura. Anexo IV nesta tese.

ANEXO VI

EVIDENCE OF REPRODUCTIVE ACTIVITY OF THE INVASIVE COMMON CARP CYPRINUS CARPIO (TELEOSTEI: CYPRINIDAE) IN A SUBTROPICAL COASTAL SYSTEM IN SOUTHERN BRAZIL

Troca, Débora F A; Lemos, Valéria M; Varela Jr. Antônio S; Vieira, João P.

(Short Communication publicada no periódico BioInvasions Records)
BioInvasions Records

Short communication

Evidence of reproductive activity of the invasive common carp Cyprinus carpio (Teleostei: Cyprinidae) in a subtropical coastal system in southern Brazil

Débora Fernanda Avila Troca¹*, Valéria Marques Lemos¹, Antônio Sérgio Varela Junior², João Paes Vieira¹

² Laboratório de Histologia, Instituto Ciências Biológicas Universidade Federal do Rio Grande, Caixa postal 474, 96201-900. Rio Grande, RS, Brazil

E-mail: dfatroca@yahoo.com.br (DFAT), vavadeleom@yahoo.com.br (VML), varelajras@hotmail.com (ASVJ), vieira@mikrus.com.br (JPV)

*Corresponding author
ABSTRACT

The common carp *Cyprinus carpio* is an omnivorous, highly fertile fractional spawner and a generalist species that can live in a wide range of biotic and abiotic conditions. The combination of these features contributes to their high invasiveness potential allowing its rapid spread and increased biomass. The species has already established in 91 out of 120 countries where it has been introduced, especially due to aquaculture and ornamental activities. This work, based on the presence of *C. carpio* inhabiting the Patos-Mirim systems, Rio Grande do Sul, Brazil, provides the first evidence of advanced stages of gonadal development in both sexes, reinforcing the view that the species can adapt to regional environmental conditions and suggests high potential for establishment and self-sustaining population in this systems.

Keywords: invasive fish; Patos-Mirim System
Introduction

Fishes are among the most introduced group of aquatic animals in the world (i.e. 624 species, Gozlan 2008). The introduction of a non-native species in an ecosystem is generally likely to present an ecological risk if the species is able to integrate itself successfully, resulting in possible detrimental effects on native species or even on ecosystem functioning (Gozlan et al. 2010). The common carp *Cyprinus carpio* (Linnaeus, 1758) has been nominated as one of the 100 of the "World's Worst" invaders (GISP 2005).

C. carpio is native to Eastern Europe and Central Asia. It is a generalist, eurythermal, and euryhaline fish, which can live in a wide range of biotic and abiotic conditions. In its natural environment, this species can survive cold winters and salinity levels up to 5 ‰, and it can tolerate low concentrations and super saturation of dissolved oxygen (Banarescu and Coad 1991). The species is omnivorous and tends to consume food of animal (larvae and aquatic insects, macro invertebrates and zooplankton) and plant origin (Weber and Brown 2009). *C. carpio* grows rapidly, achieves sexual maturation in the second year of life, is highly fertile (<2 million eggs per female) and is a fractional spawner (Balon 1975). The combination of these features allows rapid spread and increased biomass of the species contributing to their invasiveness potential (Troca and Vieira 2012).

Non-native species have primarily been introduced into new ecosystems through human activity, either deliberately or unintentionally (Gozlan et al. 2010). It is known that the great bulk of global fish introductions and translocations have been carried out for aquaculture purposes (Welcomme 1988, Naylor et al. 2001, De Silva et al. 2009).
C. carpio is one of the most widespread introduced species in the Americas, with high probability of habitat expansion (Zambrano et al. 2006). In Brazil, it was introduced at the end of the nineteenth century, according to the 1898 official records for commercial aquaculture (Welcomme 1988). C. carpio has been introduced to most of the country and has established sustainable populations in the states of Rio de Janeiro, Rio Grande do Norte and Santa Catarina (I3N Brasil 2012).

In Brazil this exotic fish can escape into natural waterways because fish farming is commonly practiced adjacent to these environments (Orsi and Agostinho 1999). At present, C. carpio is the second most cultivated freshwater fish species in the country (~81,000 ton/year) and the Rio Grande do Sul state is the principal producer (58%) (IBAMA 2007). Farming of C. carpio is presently practiced adjacent to Patos Lagoon (less than 0.01km from the edge of the lagoon in some cases) (Troca 2009) and the species has been reported from this watershed (Garcia et al. 2004, Milani and Fontoura 2007, Leal et al. 2009). To date there has been no report of C. carpio reproducing in this ecosystem. This paper presents evidence of reproductive activity of C. carpio in the Patos-Mirim System and discusses the consequence of these results.

Methods

The Patos Lagoon is ca. 250 km long and 60 km wide, covering an area of 10,360 km² along the coastal plain of Rio Grande do Sul in southern Brazil (Figure 1).
The estuarine zone is restricted to the southern portion of the lagoon (ca. 10% of total area) (Seeliger et al. 1998). The lagoon’s drainage basin (201,626 km²) is one of the largest in Latin America. The lagoon and adjacent coastal area support one of the most important fisheries in the warm-temperate southwestern Atlantic, with about 5,000 artisanal and 3,000 industrial fishermen temporarily or permanently involved in fishing activities in this region (Haimovici et al. 2006). The estuary is an important nursery for several of the most important species in these fisheries (Chao et al. 1985, Vieira and Castello 1996).

The Mirim Lagoon is shared between Brazil and Uruguay. It has an area of 3,749 km², and is linked to the Patos Lagoon through the São Gonçalo Channel, forming the biggest lagoon system in South America. Mirim Lagoon basin performs an important role in the maintenance of water balance in the adjacent Taim’s wetlands, which are recognized as a Biosphere Reserve by the UNESCO and as feeding and breeding grounds for migrant birds, fishes and reptiles (Alba et al. 2011).

C. carpio specimens were collected by fishermen hired by a local project for monitoring the occurrences of non-native species in the catches. The project was conducted between January 2010 and December 2011, with sampling conducted every two months. The specimens collected are stored whole frozen or fixed in 10% formaldehyde. The gonads were removed and histologically processed according to the protocol by Beçak and Paulete (1976).

Results

The present work reports the capture of four individual of *C. carpio* with mature gonads in the Patos-Mirim System. The first female was caught in September 2010 by
artisanal fishermen in Barra do Ribeiro village (30°17’27”S, 51°18’11”W), measuring TL (total length) = 50.5 cm, BW (body weight) = 2,395.7 g and GW (gonad weight) = 58.5 g. The second female (Figure 2) measured TL=67.0 cm, BW = 10,620 g and GW = 1,926.5g, and was captured in April 2011 in the São Gonçalo Channel (32°03’15”S, 52°30’30”W). Two mature males were caught in November 2011 in Tapes (30°40‘41’’S, 51°23’36’’W) measuring TL = 45.0 and 60.8 cm and BW = 2,917.4 and 2,844.3 g respectively. The histological analysis revealed that the ovaries were in an advanced stage of development and had numerous vitellogenic follicles (Figure 3). Only two individuals were deposited in the ichthyological collection of the Federal University of Rio Grande (FURG 2558, FURG 2656). The gonads the all individuals were preserved and deposited in the same collection (FURG 2693-2696).

Discussion

The reproductive cycle and pattern of gonadal development of C. carpio in natural ecosystems greatly depends on the ambient temperature. Spawning occurs at a water temperature of around 18°C (Billard and Breton 1978). The climate regime at Patos Lagoon favours the reproductive cycle of this species (Piedras et al. 2006, Garcia et al. 2008), especially between October and April when the average water temperature is above17°C (Zanotta et al. 2010).

According to Weber and Brown (2009), C. carpio prefers calm and shallow waters, such as flooded grasslands, to spawn. Its eggs have an adherent wrap and the larvae survive in the submerged vegetation of shallow waters even at high temperatures. This microhabitat is commonly found in the shallows waters of Patos-Mirim System and in wetlands located along its margins (Seeliger et al. 1998).
C. carpio has an invasion history in neighboring countries with similar climate, such as Uruguay and Argentina (Rosso 2006, Aigo et al. 2008). In the La Plata River basin C. carpio is considered the most abundant exotic species and also an important fishery resource (Norbis et al. 2006). In the upper reaches of the Patos Lagoon it has established in the Sinos River basin (Leal et al 2009), Jacuí River and Guapia Lake (Garcez and Sanchez-Botero 2005).

The ecological consequences of its presence in a natural ecosystem are serious. In particular, the presence of C. carpio has been shown to affect (1) rooted macrophyte densities, mainly through physical disturbance and increased turbidity; (2) benthic invertebrate densities, through predation and habitat modification; (3) phytoplankton biomass, by altering the availability of various nutrients through excretion and bioturbation; (4) zooplankton abundance, either indirectly through their effects on phytoplankton or directly through planktivory by juvenile carp C. carpio; and (5) the abundance of native fish species, through multiple indirect effects including those described above (Kulhanek et al. 2011). The reduction of abundance of native fishes is of particular concern considering the socio-economic importance of fisheries in the Patos Lagoon (Milani and Fontoura 2007; Vieira et al. 2010).

The low incidence of C. carpio in the catches of artisanal fisheries indicates that the species has not yet established in the lower part of the Patos lagoon and Mirim systems, but risk analyses show high invasive potential for this species in the region (Zambrano et al 2006; Troca and Vieira 2012). One hypothesis to explain the failure to establish a sustainable population is the low propagule pressure exerted on the system. Mardini et al. (1997) identified about 26,000 fish farmers in the state of Rio Grande do
Sul, but only 2,000 of these are located in the southern counties (Piedras and Bager 2007; Troca 2009). Furthermore, Troca (2009) demonstrate that only less than 5% of these (a total of 84 properties) cultivate carp *C. carpio*.

This paper documents evidence of the initial establishment of *C. carpio* and future work in order to monitor this invasion should be carried out, particularly focusing on breeding areas (vegetated areas difficult of sampling) to determine the presence of juveniles, which could confirm the success of establishment of the species.

Acknowledgements

We thank F. Correa and the fisherman Rogério and Alemão for supplying the fish. The study received financial support from Fundação de Amparo à Pesquisa do Rio Grande do Sul – FAPERGS, Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Capes.

References

Figure 1. The Patos-Mirim System in coastal in southern Brazil. Barra do Ribeiro Village (A) São Gonçalo Channel (B) and Tapes (C).
Figure 2. Female *Cyprinus carpio* (A) caught in April 2011 in the São Gonçalo Channel with mature gonads (B). Measured TL (total length) = 67.0 cm, BW (body weight) = 10,620 g and GW (gonad weight) = 1,926.5 g.

Figure 3. Histological section of a *Cyprinus carpio* ovary showing high frequency of oocytes with complete vitellogenesis (Hematoxylin-Eosin).